1
|
Sellgren CM, Imbeault S, Larsson MK, Oliveros A, Nilsson IAK, Codeluppi S, Orhan F, Bhat M, Tufvesson-Alm M, Gracias J, Kegel ME, Zheng Y, Faka A, Svedberg M, Powell SB, Caldwell S, Kamenski ME, Vawter MP, Schulmann A, Goiny M, Svensson CI, Hökfelt T, Schalling M, Schwieler L, Cervenka S, Choi DS, Landén M, Engberg G, Erhardt S. GRK3 deficiency elicits brain immune activation and psychosis. Mol Psychiatry 2021; 26:6820-6832. [PMID: 33976392 PMCID: PMC8760053 DOI: 10.1038/s41380-021-01106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1β, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
Collapse
Affiliation(s)
- Carl M. Sellgren
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Sophie Imbeault
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus K. Larsson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Oliveros
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Ida A. K. Nilsson
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Simone Codeluppi
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bhat
- grid.418151.80000 0001 1519 6403Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, Solna, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Tufvesson-Alm
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Gracias
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena E. Kegel
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yiran Zheng
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anthi Faka
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susan B. Powell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Sorana Caldwell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Mary E. Kamenski
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, CA USA
| | - Anton Schulmann
- grid.416868.50000 0004 0464 0574Human Genetics Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Michel Goiny
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I. Svensson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Doo-Sup Choi
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Alvarenga TA, Ribeiro DA, Araujo P, Hirotsu C, Mazaro-Costa R, Costa JL, Battisti MC, Tufik S, Andersen ML. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice. Hum Exp Toxicol 2010; 30:1275-81. [DOI: 10.1177/0960327110388535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.
Collapse
Affiliation(s)
- TA Alvarenga
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - DA Ribeiro
- Departamento de Biociencias, Universidade Federal de São Paulo, Santos, Brazil
| | - P Araujo
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - C Hirotsu
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - R Mazaro-Costa
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - JL Costa
- Instrumental Analysis Laboratory, Criminalistic Institute, São Paulo, Brazil
| | - MC Battisti
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| | - ML Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo Brazil
| |
Collapse
|
5
|
Cordeiro Q, Souza BR, Correa H, Guindalini C, Hutz MH, Vallada H, Romano-Silva MA. A review of psychiatric genetics research in the Brazilian population. BRAZILIAN JOURNAL OF PSYCHIATRY 2009; 31:154-62. [DOI: 10.1590/s1516-44462009000200013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/04/2008] [Indexed: 01/11/2023]
Abstract
OBJECTIVE AND METHOD: A large increase in the number of Brazilian studies on psychiatric genetics has been observed in the 1970's since the first publications conducted by a group of researchers in Brazil. Here we reviewed the literature and evaluated the advantages and difficulties of psychiatric genetic studies in the Brazilian population. CONCLUSION: The Brazilian population is one of the most heterogeneous populations in the world, formed mainly by the admixture between European, African and Native American populations. Although the admixture process is not a particularity of the Brazilian population, much of the history and social development in Brazil underlies the ethnic melting pot we observe nowadays. Such ethnical heterogeneity of the Brazilian population obviously brings some problems when performing genetic studies. However, the Brazilian population offers a number of particular characteristics that are of major interest when genetic studies are carried out, such as the presence of isolated populations. Thus, differences in the genetic profile and in the exposure to environmental risks may result in different interactions and pathways to psychopathology.
Collapse
|