1
|
Zhang R, Xiang N, Gao X, Zhang G, Lu T, Yuan T. Molecular Phylogenetic Relationships Based on Mitogenomes of Spider: Insights Into Evolution and Adaptation to Extreme Environments. Ecol Evol 2025; 15:e70774. [PMID: 39781249 PMCID: PMC11707259 DOI: 10.1002/ece3.70774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, we performed a comparative analysis based on a total of 255 spider mitogenomes and four outgroups, of which the mitogenomes of 39 species were assembled de novo, to explore the phylogenetic relationships and the adaptive evolution of mitogenomes. Results showed that Argyroneta aquatica had the longest mitochondrial length and the most pronounced codon preference to be UUA, followed by CCU. Codon usage frequencies were similar between families and codon usage in the mitogenome of spiders was mainly influenced by natural selection pressures rather than G/C mutation bias. Our phylogenetic topology clearly explained the evolutionary relationships among the spiders, and divergence time estimates indicated that the spiders originated in the early Devonian, and that the two clades of Mesothelae and Opisthothelae separated in the late Carboniferous. Ancestral range and trait reconstruction results supported the ancestral origin of spiders to the Devonian Nearctic realm, with the trapdoor being the original trait. Selection analysis detected positive selection signals in the ATP8 gene in Desis jiaxiangi. The ND5 gene is a convergent evolutionary gene between D. jiaxiangi and A. aquatica. Positive selection signals in the ATP8 gene and convergent selection sites in the ND5 gene may facilitate metabolic adaptation to the aquatic environment in two aquatic spiders. In conclusion, our analysis contributes to a better understanding of the taxonomic status, species diversity, mitochondrial characteristics, and environmental adaptations of these spiders.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological ScienceGuizhou Education UniversityGuiyangChina
| | - Niyan Xiang
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- School of Resources and Environmental ScienceHubei UniversityWuhanChina
| | - Xiaoman Gao
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Tian Lu
- School of Municipal and Environmental EngineeringShandong Jianzhu UniversityJinanChina
| | - Tao Yuan
- School of Ecology and EnvironmentTibet UneiversityLhasaChina
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
2
|
Rimbault M, Legeai F, Peccoud J, Mieuzet L, Call E, Nouhaud P, Defendini H, Mahéo F, Marande W, Théron N, Tagu D, Le Trionnaire G, Simon JC, Jaquiéry J. Contrasting Evolutionary Patterns Between Sexual and Asexual Lineages in a Genomic Region Linked to Reproductive Mode Variation in the pea aphid. Genome Biol Evol 2023; 15:evad168. [PMID: 37717171 PMCID: PMC10538257 DOI: 10.1093/gbe/evad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.
Collapse
Affiliation(s)
- Maud Rimbault
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers CEDEX 9, France
| | - Lucie Mieuzet
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Elsa Call
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Pierre Nouhaud
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hélène Defendini
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Frédérique Mahéo
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Nicolas Théron
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Denis Tagu
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Gaël Le Trionnaire
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean-Christophe Simon
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Julie Jaquiéry
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
3
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
4
|
Khan F, Roy MC, Kim Y. Thelytokous Reproduction of Onion Thrips, Thrips tabaci Lindeman 1889, Infesting Welsh Onion and Genetic Variation among Their Subpopulations. INSECTS 2022; 13:insects13010078. [PMID: 35055921 PMCID: PMC8779969 DOI: 10.3390/insects13010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Parthenogenesis is an asexual type of reproduction that usually occurs in thrips. Thelytokous parthenogenesis is a kind of reproduction that produces female progeny without mating. This study reports a thelytokous reproduction of the onion thrips, Thrips tabaci Lindeman 1889, host strain infesting Welsh onion. Cytochrome oxidase I (COI) sequences of the populations exhibited specific residues at conserved positions of thelytokous biotype (called ‘L2’). Phylogenetic tree analysis revealed that COI sequences of the onion thrips collected from different local populations infesting Welsh onion were clustered with L2 biotype populations. In the laboratory, the thelytokous reproduction was demonstrated because each single thrips produced only female progeny. Interestingly, these thelytokous populations collected from different localities showed a certain level of genetic diversity. However, the genetic distance was independent of the actual distance among different local populations. Results of this study indicate that T. tabaci infesting Welsh onion is a thelytokous biotype with genetic variation among local populations. Abstract Parthenogenesis is not uncommon in thrips. This asexual reproduction produces males (arrhenotokous) or female (thelytokous). Only females are found in the onion thrips (Thrips tabaci Lindeman 1889) infesting Welsh onion (Allium fistulosum) in several areas of Korea. To determine the reproduction mode of T. tabaci, thrips infesting Welsh onion were collected from different localities in Korea. Cytochrome oxidase I (COI) sequences were then assessed. Results showed that all test local populations had signature motif specific to a thelytokous type. These COI sequences were clustered with other thelytokous populations separated from arrhenotokous T. tabaci populations. In a laboratory test, individual rearing produced female progeny without any males. These results support that Korean onion thrips infesting Welsh onion have the thelytokous type of parthenogenesis. Local thrips populations exhibited significant variations in susceptibility to chemical and biological insecticides. Random amplified polymorphic DNA (RAPD) analysis indicated genetic variations of local populations. However, the genetic distance estimated from RAPD was independent of the actual distance among different local populations. These results suggest that genetic variations of T. tabaci are arisen from population subdivision due to asexual thelytokous reproductive mode.
Collapse
|
5
|
Langlands Z, du Rand EE, Yusuf AA, Pirk CWW. Functional response of the hypopharyngeal glands to a social parasitism challenge in Southern African honey bee subspecies. Parasitol Res 2022; 121:267-274. [PMID: 34988669 DOI: 10.1007/s00436-021-07391-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Hypopharyngeal gland (HPG) development in honey bee workers is primarily age-dependent and changes according to the tasks performed in the colony. HPG activity also depends on colony requirements and is flexible in relation to the need for feeding brood. Very little is known about HPG development in the honey bee subspecies found in Southern Africa. We examined HPG development in Apis mellifera scutellata and A. m. capensis, including A. m. scutellata colonies infested with an invasive parasitic clonal lineage of A. m. capensis known to manipulate food provisioning to the parasitic larvae by their A.m. scutellata hosts, under natural in-hive conditions in bees aged 0 to 14 days using light microscopy. We found marked differences in acini size (berry-like clusters of secretory cells) and the age at which maximum HPG development occurred between the subspecies and in the presence of the parasite. In A. m. scutellata workers, acini reached maximum size at 6 days. The acini of A. m. capensis workers were larger (up to double) than those of A. m. scutellata and reached maximum size at 8 days, while the HPG acini in A. m. scutellata workers infested with A. m. capensis clones reached development sizes similar to those of A. m. capensis at day 10 and were 1.5 times larger than those of uninfested A. m. scutellata. This provides foundational insights into a functional response affecting the development of the HPG most likely associated with brood pheromone composition and how this is altered in the presence of a social parasite.
Collapse
Affiliation(s)
- Zoë Langlands
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Esther E du Rand
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
6
|
A Single Gene Causes Thelytokous Parthenogenesis, the Defining Feature of the Cape Honeybee Apis mellifera capensis. Curr Biol 2020; 30:2248-2259.e6. [DOI: 10.1016/j.cub.2020.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
7
|
El-Niweiri MAA, Moritz RFA, Lattorff HMG. The Invasion of the Dwarf Honeybee, Apis florea, along the River Nile in Sudan. INSECTS 2019; 10:insects10110405. [PMID: 31731633 PMCID: PMC6920986 DOI: 10.3390/insects10110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
Abstract
The spread of the dwarf honeybee, Apis florea, in Sudan along the river Nile in a linear fashion provides a good model for studying the population dynamics and genetic effects of an invasion by a honeybee species. We use microsatellite DNA analyses to assess the population structure of both invasive A. florea and native Apis mellifera along the river Nile. The invasive A. florea had significantly higher population densities than the wild, native A. mellifera. Nevertheless, we found no indication of competitive displacement, suggesting that although A. florea had a high invasive potential, it coexisted with the native A. mellifera along the river Nile. The genetic data indicated that the invasion of A. florea was established by a single colony.
Collapse
Affiliation(s)
- Mogbel A. A. El-Niweiri
- Department of Biology, King Khalid University, Abha, Asir Region 61321, Saudi Arabia;
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany;
- Department of Bee Research, National Centre for Research (NCR), Khartoum 11111, Sudan
| | - Robin F. A. Moritz
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - H. Michael G. Lattorff
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi PO Box 30772-00100, Kenya
- Correspondence: ; Tel.: +254-20-863-2066
| |
Collapse
|
8
|
Yunusbaev UB, Kaskinova MD, Ilyasov RA, Gaifullina LR, Saltykova ES, Nikolenko AG. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541906019x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Christmas MJ, Smith NMA, Oldroyd BP, Webster MT. Social Parasitism in the Honeybee (Apis mellifera) Is Not Controlled by a Single SNP. Mol Biol Evol 2019; 36:1764-1767. [DOI: 10.1093/molbev/msz100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
The Cape bee (Apis mellifera capensis) is a subspecies of the honeybee, in which workers commonly lay diploid unfertilized eggs via a process known as thelytoky. A recent study aimed to map the genetic basis of this trait in the progeny of a single capensis queen where workers laid either diploid (thelytokous) or haploid (arrhenotokous) eggs. A nonsynonymous single nucleotide polymorphism (SNP) in a gene of unknown function was reported to be strongly associated with thelytoky in this colony. Here, we analyze genome sequences from a global sample of A. mellifera and identify populations where the proposed thelytoky allele at this SNP is common but thelytoky is absent. We also analyze genome sequences of three capensis queens produced by thelytoky and find that, contrary to predictions, they do not carry the proposed thelytoky allele. The proposed SNP is therefore neither sufficient nor required to produce thelytoky in A. mellifera.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Lab, Ecology and Evolution, University of Sydney, Sydney, NSW, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, Ecology and Evolution, University of Sydney, Sydney, NSW, Australia
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Aumer D, Stolle E, Allsopp M, Mumoki F, Pirk CWW, Moritz RFA. A Single SNP Turns a Social Honey Bee (Apis mellifera) Worker into a Selfish Parasite. Mol Biol Evol 2019; 36:516-526. [PMID: 30624681 PMCID: PMC6389321 DOI: 10.1093/molbev/msy232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The evolution of altruism in complex insect societies is arguably one of the major transitions in evolution and inclusive fitness theory plausibly explains why this is an evolutionary stable strategy. Yet, workers of the South African Cape honey bee (Apis mellifera capensis) can reverse to selfish behavior by becoming social parasites and parthenogenetically producing female offspring (thelytoky). Using a joint mapping and population genomics approach, in combination with a time-course transcript abundance dynamics analysis, we show that a single nucleotide polymorphism at the mapped thelytoky locus (Th) is associated with the iconic thelytokous phenotype. Th forms a linkage group with the ecdysis-triggering hormone receptor (Ethr) within a nonrecombining region under strong selection in the genome. A balanced detrimental allele system plausibly explains why the trait is specific to A. m. capensis and cannot easily establish itself into genomes of other honey bee subspecies.
Collapse
Affiliation(s)
- Denise Aumer
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany
| | - Eckart Stolle
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany
| | - Michael Allsopp
- Honey Bee Research Section, ARC Plant Protection Research Institute, Stellenbosch, South Africa
| | - Fiona Mumoki
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Robin F A Moritz
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Saale, Germany
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Sericulture and Apiculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Mumoki FN, Pirk CWW, Yusuf AA, Crewe RM. Reproductive parasitism by worker honey bees suppressed by queens through regulation of worker mandibular secretions. Sci Rep 2018; 8:7701. [PMID: 29799016 PMCID: PMC5967312 DOI: 10.1038/s41598-018-26060-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Social cohesion in social insect colonies can be achieved through the use of chemical signals whose production is caste-specific and regulated by social contexts. In honey bees, queen mandibular gland pheromones (QMP) maintain reproductive dominance by inhibiting ovary activation and production of queen-like mandibular gland signals in workers. We investigated whether honey bee queens can control reproductively active workers of the intraspecific social parasite Apis mellifera capensis, parasitising A. m. scutellata host colonies. Our results show that the queen’s QMP suppresses ovarian activation and inhibits the production of QMP pheromone signals by the parasitic workers, achieved through differential expression of enzymes involved in the biosynthesis of these pheromones at two points in the biosynthetic pathway. This is the first report showing that honey bee queens can regulate reproduction in intraspecific social parasites and deepens our understanding of the molecular mechanisms involved in the regulation of worker reproduction in social insects.
Collapse
Affiliation(s)
- Fiona N Mumoki
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Robin M Crewe
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| |
Collapse
|
12
|
Aumer D, Mumoki FN, Pirk CWW, Moritz RFA. The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis. Naturwissenschaften 2018; 105:22. [PMID: 29557991 DOI: 10.1007/s00114-018-1552-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.
Collapse
Affiliation(s)
- Denise Aumer
- Department of Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg 4, 06099, Halle (Saale), Germany.
| | - Fiona N Mumoki
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - Christian W W Pirk
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - Robin F A Moritz
- Department of Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg 4, 06099, Halle (Saale), Germany.,Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Okosun OO, Pirk CWW, Crewe RM, Yusuf AA. Glandular sources of pheromones used to control host workers (Apis mellifera scutellata) by socially parasitic workers of Apis mellifera capensis. JOURNAL OF INSECT PHYSIOLOGY 2017; 102:42-49. [PMID: 28889990 DOI: 10.1016/j.jinsphys.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Pheromonal control by the honey bee queen is achieved through the use of secretions from diverse glandular sources, but the use of pheromones from a variety of glandular sources by reproductively dominant workers, has not previously been explored. Using the social parasite, Apis mellifera capensis clonal worker we studied the diversity of glandular sources used for pheromonal control of reproductively subordinate A. m. scutellata workers. To determine whether pheromones from different glandular sources are used by reproductively active workers to achieve dominance and evaluate the degree of pheromonal competition between workers of the two sub-species, we housed groups of workers of the two sub-species together in cages and analysed mandibular and tergal gland secretions as well as, ovarian activation status of each worker after 21days. The results showed that A. m. capensis invasive clones used both mandibular and tergal gland secretions to achieve reproductive dominance and suppress ovarian activation in their A. m. scutellata host workers. The reproductively dominant workers (false queens) produced more queen-like pheromones and inhibited ovarian activation in subordinate A. m. scutellata workers. These results show that tergal gland pheromones working in synergy with pheromones from other glands allow individual workers (false queens) to establish reproductive dominance within these social groups and to act in a manner similar to that of queens. Thus suggesting that, the evolution of reproductively dominant individuals (queens or false queens) and subordinate individuals (workers) in social insects like the honey bee is the result of a complex interplay of pheromonal signals from different exocrine glands.
Collapse
Affiliation(s)
- Olabimpe O Okosun
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Robin M Crewe
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| |
Collapse
|
14
|
Rueppell O, Aumer D, Moritz RF. Ties between ageing plasticity and reproductive physiology in honey bees (Apis mellifera) reveal a positive relation between fecundity and longevity as consequence of advanced social evolution. CURRENT OPINION IN INSECT SCIENCE 2016; 16:64-68. [PMID: 27720052 PMCID: PMC5094365 DOI: 10.1016/j.cois.2016.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 05/12/2023]
Abstract
Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity. In several special cases, such as the reproductive workers of Apis mellifera capensis, within-caste plasticity enables further studies of the fecundity-longevity syndrome in honey bees. At present, molecular evidence suggests that a reorganization of physiological control pathways may facilitate longevity of reproductive individuals. However, the social role and social environment of the different colony members are also very important and one of the key future questions is how much social facilitation versus internal regulation is responsible for the positive association between fecundity and longevity in honey bees.
Collapse
Affiliation(s)
- Olav Rueppell
- University of North Carolina at Greensboro, Department of Biology, Greensboro, NC, USA.
| | - Denise Aumer
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Robin Fa Moritz
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
15
|
Wallberg A, Pirk CW, Allsopp MH, Webster MT. Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genet 2016; 12:e1006097. [PMID: 27280405 PMCID: PMC4900560 DOI: 10.1371/journal.pgen.1006097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| | - Christian W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Mike H. Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, South Africa
| | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| |
Collapse
|
16
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Santos CG, Hartfelder K. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis. Genet Mol Biol 2015; 38:263-77. [PMID: 26500430 PMCID: PMC4612609 DOI: 10.1590/s1415-475738320140393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees' hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways.
Collapse
Affiliation(s)
- Carolina Gonçalves Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Chapman NC, Beekman M, Allsopp MH, Rinderer TE, Lim J, Oxley PR, Oldroyd BP. Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity (Edinb) 2015; 114:584-92. [PMID: 25585920 DOI: 10.1038/hdy.2014.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 01/31/2023] Open
Abstract
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.
Collapse
Affiliation(s)
- N C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, South Africa
| | - T E Rinderer
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, USDA-ARS, Baton Rouge, LA, USA
| | - J Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - P R Oxley
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| |
Collapse
|
19
|
Maccari M, Amat F, Hontoria F, Gómez A. Laboratory generation of new parthenogenetic lineages supports contagious parthenogenesis in Artemia. PeerJ 2014; 2:e439. [PMID: 25024909 PMCID: PMC4081286 DOI: 10.7717/peerj.439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/31/2014] [Indexed: 11/23/2022] Open
Abstract
Contagious parthenogenesis—a process involving rare functional males produced by a parthenogenetic lineage which mate with coexisting sexual females resulting in fertile parthenogenetic offspring—is one of the most striking mechanisms responsible for the generation of new parthenogenetic lineages. Populations of the parthenogenetic diploid brine shrimp Artemia produce fully functional males in low proportions. The evolutionary role of these so-called Artemia rare males is, however, unknown. Here we investigate whether new parthenogenetic clones could be obtained in the laboratory by mating these rare males with sexual females. We assessed the survival and sex ratio of the hybrid ovoviviparous offspring from previous crosses between rare males and females from all Asiatic sexual species, carried out cross-mating experiments between F1 hybrid individuals to assess their fertility, and estimated the viability and the reproductive mode of the resulting F2 offspring. Molecular analysis confirmed the parentage of hybrid parthenogenetic F2. Our study documents the first laboratory synthesis of new parthenogenetic lineages in Artemia and supports a model for the contagious spread of parthenogenesis. Our results suggest recessive inheritance but further experiments are required to confirm the likelihood of the contagious parthenogenesis model.
Collapse
Affiliation(s)
- Marta Maccari
- Instituto de Acuicultura de Torre de la Sal (Consejo Superior de Investigaciones Científicas) , Ribera de Cabanes (Castellón) , Spain ; School of Biological, Biomedical and Environmental Sciences, University of Hull , Hull , United Kingdom
| | - Francisco Amat
- Instituto de Acuicultura de Torre de la Sal (Consejo Superior de Investigaciones Científicas) , Ribera de Cabanes (Castellón) , Spain
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (Consejo Superior de Investigaciones Científicas) , Ribera de Cabanes (Castellón) , Spain
| | - Africa Gómez
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Hull , United Kingdom
| |
Collapse
|
20
|
Neiman M, Sharbel TF, Schwander T. Genetic causes of transitions from sexual reproduction to asexuality in plants and animals. J Evol Biol 2014; 27:1346-59. [DOI: 10.1111/jeb.12357] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 11/30/2022]
Affiliation(s)
- M. Neiman
- Department of Biology; University of Iowa; Iowa City IA USA
| | - T. F. Sharbel
- Apomixis Research Group; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK); Gatersleben Germany
| | - T. Schwander
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
21
|
Dixon L, Kuster R, Rueppell O. Reproduction, social behavior, and aging trajectories in honeybee workers. AGE (DORDRECHT, NETHERLANDS) 2014; 36:89-101. [PMID: 23765046 PMCID: PMC3889882 DOI: 10.1007/s11357-013-9546-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/20/2013] [Indexed: 05/26/2023]
Abstract
While a negative correlation between reproduction and life span is commonly observed, specialized reproductive individuals outlive their non-reproductive nestmates in all eusocial species, including the honeybee, Apis mellifera (L). The consequences of reproduction for individual life expectancy can be studied directly by comparing reproductive and non-reproductive workers. We quantified the life span consequences of reproduction in honeybee workers by removal of the queen to trigger worker reproduction. Furthermore, we observed the social behavior of large cohorts of workers under experimental and control conditions to test for associations with individual life expectancy. Worker life expectancy was moderately increased by queen removal. Queenless colonies contained a few long-lived workers, and oviposition behavior was associated with a strong reduction in mortality risk, indicating that a reproductive role confers a significant survival advantage. This finding is further substantiated by an association between brood care behavior and worker longevity that depends on the social environment. In contrast, other in-hive activities, such as fanning, trophallaxis, and allogrooming did not consistently affect worker life expectancy. The influence of foraging varied among replicates. An earlier age of transitioning from in-hive tasks to outside foraging was always associated with shorter life spans, in accordance with previous studies. In sum, our studies quantify how individual mortality is affected by particular social roles and colony environments and demonstrate interactions between the two. The exceptional, positive association between reproduction and longevity in honeybees extends to within-caste plasticity, which may be exploited for mechanistic studies.
Collapse
Affiliation(s)
- Luke Dixon
- />Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403 USA
- />Life Science Department, Winston-Salem State University, 601 S. Martin Luther King, Jr. Drive, Winston-Salem, NC 27110 USA
| | - Ryan Kuster
- />Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403 USA
- />Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695 USA
| | - Olav Rueppell
- />Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, 312 Eberhart Building, Greensboro, NC 27403 USA
| |
Collapse
|
22
|
Lattorff HMG, Moritz RF. Genetic underpinnings of division of labor in the honeybee (Apis mellifera). Trends Genet 2013; 29:641-8. [DOI: 10.1016/j.tig.2013.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022]
|
23
|
Abstract
William D. Hamilton postulated the existence of 'genes underlying altruism', under the rubric of inclusive fitness theory, a half-century ago. Such genes are now poised for discovery. In this article, we develop a set of intuitive criteria for the recognition and analysis of genes for altruism and describe the first candidate genes affecting altruism from social insects and humans. We also provide evidence from a human population for genetically based trade-offs, underlain by oxytocin-system polymorphisms, between alleles for altruism and alleles for non-social cognition. Such trade-offs between self-oriented and altruistic behaviour may influence the evolution of phenotypic diversity across all social animals.
Collapse
Affiliation(s)
- Graham J Thompson
- Department of Biology, Western University, , 1151 Richmond St. North, London, Ontario, Canada , N6A 5B7
| | | | | |
Collapse
|
24
|
Rabeling C, Kronauer DJC. Thelytokous parthenogenesis in eusocial Hymenoptera. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:273-292. [PMID: 23072461 DOI: 10.1146/annurev-ento-120811-153710] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Female parthenogenesis, or thelytoky, is particularly common in solitary Hymenoptera. Only more recently has it become clear that many eusocial species also regularly reproduce thelytokously, and here we provide a comprehensive overview. Especially in ants, thelytoky underlies a variety of idiosyncratic life histories with unique evolutionary and ecological consequences. In all eusocial species studied, thelytoky probably has a nuclear genetic basis and the underlying cytological mechanism retains high levels of heterozygosity. This is in striking contrast to many solitary wasps, in which thelytoky is often induced by cytoplasmic bacteria and results in an immediate loss of heterozygosity. These differences are likely related to differences in haplodiploid sex determination mechanisms, which in eusocial species usually require heterozygosity for female development. At the same time, haplodiploidy might account for important preadaptations that can help explain the apparent ease with which Hymenoptera transition between sexual and asexual reproduction.
Collapse
Affiliation(s)
- Christian Rabeling
- Museum of Comparative Zoology Labs, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
25
|
Beekman M, Allsopp MH, Lim J, Goudie F, Oldroyd BP. Response to "Reproductive Biology of the Cape Honeybee: A Critique of Beekman et al." by Pirk et al. J Hered 2012. [DOI: 10.1093/jhered/ess008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Goudie F, Allsopp MH, Beekman M, Oxley PR, Lim J, Oldroyd BP. Maintenance and loss of heterozygosity in a thelytokous lineage of honey bees (Apis mellifera capensis). Evolution 2012; 66:1897-906. [PMID: 22671554 DOI: 10.1111/j.1558-5646.2011.01543.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.
Collapse
Affiliation(s)
- Frances Goudie
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Behrens D, Huang Q, Geßner C, Rosenkranz P, Frey E, Locke B, Moritz RFA, Kraus FB. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol Evol 2011; 1:451-8. [PMID: 22393513 PMCID: PMC3287329 DOI: 10.1002/ece3.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/16/2011] [Accepted: 07/19/2011] [Indexed: 11/07/2022] Open
Abstract
Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.
Collapse
Affiliation(s)
- Dieter Behrens
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
| | - Qiang Huang
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Honeybee Research Institute, Jiangxi Agricultural UniversityNanchang 330045, China
| | - Cornelia Geßner
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Department of Anatomy and Structural Biology, University of Otago270 Great King Street, 9016 Dunedin, New Zealand
| | - Peter Rosenkranz
- Apicultural State Institute, University of HohenheimAugust-von-Hartmannstraße 13, 70599 Stuttgart, Germany
| | - Eva Frey
- Apicultural State Institute, University of HohenheimAugust-von-Hartmannstraße 13, 70599 Stuttgart, Germany
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural SciencesUlls Väg 16, 750–07 Uppsala, Sweden
| | - Robin F A Moritz
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
- Department of Zoology and Entomology, University of PretoriaPretoria, South Africa
| | - F B Kraus
- Institute of Biology, Martin-Luther-University Halle-WittenbergHoher Weg 4, 06099 Halle (Saale), Germany
| |
Collapse
|
28
|
Wenseleers T, Van Oystaeyen A. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. Bioessays 2011; 33:927-37. [PMID: 21997278 DOI: 10.1002/bies.201100096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.
Collapse
Affiliation(s)
- Tom Wenseleers
- Laboratory of Entomology, Department of Biology, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
29
|
Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera). Proc Natl Acad Sci U S A 2011; 108:15282-7. [PMID: 21896748 DOI: 10.1073/pnas.1109343108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1-52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292-295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation-one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite.
Collapse
|
30
|
Bloch G, Grozinger CM. Social molecular pathways and the evolution of bee societies. Philos Trans R Soc Lond B Biol Sci 2011; 366:2155-70. [PMID: 21690132 PMCID: PMC3130366 DOI: 10.1098/rstb.2010.0346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review 'ground plan' and 'genetic toolkit' models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into 'social pathways', which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
31
|
Beekman M, Allsopp MH, Lim J, Goudie F, Oldroyd BP. Asexually produced Cape honeybee queens (Apis mellifera capensis) reproduce sexually. J Hered 2011; 102:562-6. [PMID: 21775677 DOI: 10.1093/jhered/esr075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unmated workers of the Cape honeybee Apis mellifera capensis can produce female offspring including daughter queens. As worker-laid queens are produced asexually, we wondered whether these asexually produced individuals reproduce asexually or sexually. We sampled 11 colonies headed by queens known to be the clonal offspring of workers and genotyped 23 worker offspring from each queen at 5 microsatellite loci. Without exception, asexually produced queens produced female worker offspring sexually. In addition, we report the replacement of a queen by her asexually produced granddaughter, with this asexually produced queen also producing offspring sexually. Hence, once a female larva is raised as a queen, mating and sexual reproduction appears to be obligatory in this subspecies, despite the fact that worker-laid queens are derived from asexual lineages.
Collapse
Affiliation(s)
- Madeleine Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
32
|
Sandrock C, Vorburger C. Single-Locus Recessive Inheritance of Asexual Reproduction in a Parasitoid Wasp. Curr Biol 2011; 21:433-7. [PMID: 21353557 DOI: 10.1016/j.cub.2011.01.070] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Sandrock
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
33
|
Stolle E, Wilfert L, Schmid-Hempel R, Schmid-Hempel P, Kube M, Reinhardt R, Moritz RFA. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758) reveals slow genome and chromosome evolution in the Apidae. BMC Genomics 2011; 12:48. [PMID: 21247459 PMCID: PMC3034698 DOI: 10.1186/1471-2164-12-48] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/19/2011] [Indexed: 12/30/2022] Open
Abstract
Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs) and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.
Collapse
Affiliation(s)
- Eckart Stolle
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Engelstädter J, Sandrock C, Vorburger C. Contagious parthenogenesis, automixis, and a sex determination meltdown. Evolution 2010; 65:501-11. [PMID: 21029077 DOI: 10.1111/j.1558-5646.2010.01145.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis-inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis-inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.
Collapse
Affiliation(s)
- Jan Engelstädter
- Institute of Integrative Biology, ETH Zurich, Universitätsstr.16, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
35
|
Oldroyd BP, Allsopp MH, Lim J, Beekman M. A thelytokous lineage of socially parasitic honey bees has retained heterozygosity despite at least 10 years of inbreeding. Evolution 2010; 65:860-8. [PMID: 21044063 DOI: 10.1111/j.1558-5646.2010.01164.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites. The current infestation is 20-year old--surprising because an asexual lineage is expected to show a decline in vigor over time due to increasing homozygosity. The decline is expected to be acute in honey bees, where homozygosity at the sex locus is lethal. We surveyed colonies from the zone of infestation and genotyped putative parasites at two sets of linked microsatellite loci. We confirm that there is a single clonal lineage of parasites that shows minor variations arising from recombination events. The lineage shows high levels of heterozygosity, which may be maintained by selection against homozygotes, or by a reduction in recombination frequency within the lineage. We suggest that the clonal lineage can endure the costs of asexual reproduction because of the fitness benefits of its parasitic life history.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
36
|
Rueppell O, Metheny JD, Linksvayer T, Fondrk MK, Page RE, Amdam GV. Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity (Edinb) 2010; 106:894-903. [PMID: 21048673 DOI: 10.1038/hdy.2010.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The molecular basis of complex traits is increasingly understood but a remaining challenge is to identify their co-regulation and inter-dependence. Pollen hoarding (pln) in honeybees is a complex trait associated with a well-characterized suite of linked behavioral and physiological traits. In European honeybee stocks bidirectionally selected for pln, worker (sterile helper) ovary size is pleiotropically affected by quantitative trait loci that were initially identified for their effect on foraging behavior. To gain a better understanding of the genetic architecture of worker ovary size in this model system, we analyzed a series of crosses between the selected strains. The crossing results were heterogeneous and suggested non-additive effects. Three significant and three suggestive quantitative trait loci of relatively large effect sizes were found in two reciprocal backcrosses. These loci are not located in genome regions of known effects on foraging behavior but contain several interesting candidate genes that may specifically affect worker-ovary size. Thus, the genetic architecture of this life history syndrome may be comprised of pleiotropic, central regulators that influence several linked traits and other genetic factors that may be downstream and trait specific.
Collapse
Affiliation(s)
- O Rueppell
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, Greensboro, NC 27403, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Moritz RFA, Lattorff HMG, Crous KL, Hepburn RH. Social parasitism of queens and workers in the Cape honeybee (Apis mellifera capensis). Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1077-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Kraus FB, Gerecke E, Moritz RFA. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav Genet 2010; 41:323-8. [PMID: 20640499 DOI: 10.1007/s10519-010-9382-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 07/02/2010] [Indexed: 11/28/2022]
Abstract
Division of labour is a fundamental property of any social system. The specialization of different individuals in different tasks increases the overall work performance and efficiency. Specialization is thought to be the very foundation of the success of human societies but also in complex colonies of social insects. In human societies an advanced form of division of labour, especially since the industrialisation, is shift work, where individuals perform the same task but in subsequent cohorts in time. Although social insects can measure and are aware of time, shift work has not been documented in colonies of social insects so far. We observed foragers of two honeybee (Apis mellifera) colonies (approximately 140 workers each) and genotyped them with microsatellite DNA markers. We determined paternity and assigned them to the various subfamilies in the colony to test whether there is genetic variance for shift work in foraging honeybees. We could show that the patriline identity of the foragers had a significant effect on foraging either in the morning or evening. Individual foragers differed in their preference for the "early" or "late" shift, and shift work indeed existed in the colony.
Collapse
Affiliation(s)
- F Bernhard Kraus
- Institut für Biologie, Molecular Ecology Work Group, Martin Luther University Halle-Wittenberg, Hoher Weg 4, Halle (Saale), Germany.
| | | | | |
Collapse
|
39
|
|
40
|
Mateo Leach I, Hesseling A, Huibers WHC, Witsenboer H, Beukeboom LW, van de Zande L. Transcriptome and proteome analysis of ovaries of arrhenotokous and thelytokous Venturia canescens. INSECT MOLECULAR BIOLOGY 2009; 18:477-482. [PMID: 19453764 DOI: 10.1111/j.1365-2583.2009.00890.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Under arrhenotoky, unfertilized haploid eggs develop as males but under thelytoky they develop into diploid females after they have undergone diploidy restoration. In the parasitoid wasp Venturia canescens both reproductive modes occur. Thelytoky is genetically determined but the underlying genetics of diploidy restoration remain unknown. In this study we aim to identify the genes and/or proteins that control thelytoky. cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of total ovarian RNA and two-dimensional protein electrophoresis in combination with mass spectrometry revealed putative transcripts and proteins involved in arrhenotokous and thelytokous development. The detected tubulin and actin protein differences are most likely functionally related to the two types of reproduction.
Collapse
Affiliation(s)
- I Mateo Leach
- Evolutionary Genetics, Center for Ecological and Evolutionary Studies, University of Groningen, NL-9750 AA Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Moritz RFA, Haddad N, Bataieneh A, Shalmon B, Hefetz A. Invasion of the dwarf honeybee Apis florea into the near East. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9527-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Barrett RDH, Rogers SM, Schluter D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 2009; 63:2831-7. [PMID: 19545262 DOI: 10.1111/j.1558-5646.2009.00762.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adaptive radiation occurs when divergent natural selection in different environments leads to phenotypic differentiation. The pleiotropic effects of underlying genes can either promote or constrain this diversification. Identifying the pleiotropic effects of genes responsible for divergent traits, and testing how the environment influences these effects, can therefore help to provide an understanding of how ecology drives evolutionary change between populations. Positive selection on low-armor alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armor in populations following freshwater colonization by fully armored marine sticklebacks. Here, we demonstrate that Eda has environmentally determined pleiotropic effects on armor and growth. When raised in freshwater, reduced armor sticklebacks carrying "low" alleles at Eda had increased growth rate relative to fully armored sticklebacks carrying "complete" alleles. In saltwater treatments this growth advantage was present during juvenile growth but lost during adult growth, suggesting that in this environment stickleback are able to develop full armor plates without sacrificing overall growth rate. The environment specific pleiotropic effects of Eda demonstrate that ecological factors can mediate the influence of genetic architecture in driving phenotypic evolution. Furthermore, because size is important for mate choice in stickleback, the growth rate differences influenced by Eda may have effects on reproductive isolation between marine and freshwater populations.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
43
|
Rueppell O. Characterization of quantitative trait loci for the age of first foraging in honey bee workers. Behav Genet 2009; 39:541-53. [PMID: 19449161 DOI: 10.1007/s10519-009-9278-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/30/2009] [Indexed: 11/26/2022]
Abstract
Identifying the basis of quantitative trait loci (QTL) remains challenging for the study of complex traits, such as behavior. The honey bee is a good model combining interesting social behavior with a high recombination rate that facilitates this identification. Several studies have focused on the pollen hoarding syndrome, identifying multiple QTL as the genetic basis of its behavioral components. One component, the age of first foraging, is central for colony organization and four QTL were previously described without identification of their genomic location. Enabled by the honey bee genome project, this study provides data from multiple experiments to scrutinize these QTL, including individual and pooled SNP mapping, sequencing of AFLP markers, and microsatellite genotyping. The combined evidence confirms and localizes two of the previous QTL on chromosome four and five, dismisses the other two, and suggests one novel genomic region on chromosome eleven to influence the age of first foraging. Among the positional candidates the Ank2, PKC, Erk7, and amontillado genes stand out due to corroborating functional evidence. This study thus demonstrates the power of combined, genome-based approaches to enable targeted studies of a manageable set of candidate genes for natural behavioral variation in the important, complex social trait "age of first foraging".
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, Greensboro, NC, 27403, USA.
| |
Collapse
|
44
|
Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 2008; 9:735-48. [PMID: 18802413 DOI: 10.1038/nrg2429] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Division of labour--individuals specializing in different activities--features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.
Collapse
Affiliation(s)
- Chris R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
45
|
SHAIBI T, LATTORFF HMG, MORITZ RFA. A microsatellite DNA toolkit for studying population structure inApis mellifera. Mol Ecol Resour 2008; 8:1034-6. [DOI: 10.1111/j.1755-0998.2008.02146.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates. Genetics 2008; 180:359-66. [PMID: 18716331 DOI: 10.1534/genetics.108.090415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.
Collapse
|
47
|
Moritz RFA, Pirk CWW, Hepburn HR, Neumann P. Short-sighted evolution of virulence in parasitic honeybee workers (Apis mellifera capensis Esch.). Naturwissenschaften 2008; 95:507-13. [PMID: 18288468 DOI: 10.1007/s00114-008-0351-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/09/2008] [Accepted: 01/23/2008] [Indexed: 11/28/2022]
Abstract
The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.
Collapse
Affiliation(s)
- Robin F A Moritz
- Institut für Biologie, Molekulare Okologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | |
Collapse
|
48
|
Beekman M, Allsopp MH, Wossler TC, Oldroyd BP. Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity (Edinb) 2007; 100:13-8. [PMID: 17848972 DOI: 10.1038/sj.hdy.6801058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.
Collapse
Affiliation(s)
- M Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
49
|
Cristino AS, Nunes FMF, Lobo CH, Bitondi MMG, Simões ZLP, da Fontoura Costa L, Lattorff HMG, Moritz RFA, Evans JD, Hartfelder K. Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. INSECT MOLECULAR BIOLOGY 2006; 15:703-14. [PMID: 17069641 PMCID: PMC1847504 DOI: 10.1111/j.1365-2583.2006.00696.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The honey bee queen and worker castes are a model system for developmental plasticity. We used established expressed sequence tag information for a Gene Ontology based annotation of genes that are differentially expressed during caste development. Metabolic regulation emerged as a major theme, with a caste-specific difference in the expression of oxidoreductases vs. hydrolases. Motif searches in upstream regions revealed group-specific motifs, providing an entry point to cis-regulatory network studies on caste genes. For genes putatively involved in reproduction, meiosis-associated factors came out as highly conserved, whereas some determinants of embryonic axes either do not have clear orthologs (bag of marbles, gurken, torso), or appear to be lacking (trunk) in the bee genome. Our results are the outcome of a first genome-based initiative to provide an annotated framework for trends in gene regulation during female caste differentiation (representing developmental plasticity) and reproduction.
Collapse
Affiliation(s)
- A S Cristino
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|