1
|
Sumner EE, Morgan JW, Venn SE, Camac JS. Survival and growth of a high-mountain daisy transplanted outside its local range, and implications for climate-induced distribution shifts. AOB PLANTS 2022; 14:plac014. [PMID: 35498909 PMCID: PMC9049260 DOI: 10.1093/aobpla/plac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Field transplant experiments can improve our understanding of the effects of climate on distributions of plants versus a milieu of biotic factors which may be mediated by climate. We use a transplant experiment to test how survival and growth of a mountain-top daisy (Podolepis robusta), when planted within and outside its current local range, varies as a function of individual plant size, elevation, aspect and the presence of other vegetation. We expected a home-site advantage for the species, with highest survival and growth within the species' current elevational limits, and a decline in vital rates above (due to physiological limitations) and below (due to competition with near-neighbours) these limits. Transplant survival during the beginning of the census was high (89 %), though by the third growing season, 36 % of initial transplants were remaining. Elevation had a significant negative effect on individual mortality rates; plants growing at higher elevations had a lower estimated hazard rate and thus, higher survival relative to those planted at elevations below the current lower limit of the distribution. By contrast, we detected no significant effect of elevation on growth rates. Small vegetation gaps had no effect on growth rates, though we found a negative, but non-significant, effect on mortality rates. Aspect had a very strong impact on growth. Plants transplanted to cool aspects had a significantly lower growth rate relative to transplants growing on a warm aspect. Conversely, aspect was not a significant predictor of individual mortality rates. Restrictions on the local distribution of P. robusta appear to be governed by mortality drivers at lower elevation and by growth drivers associated with aspect. We highlight that our ability to understand the drivers of distributions in current and future climates will be limited if contextual- and individual-level plant responses remain understudied.
Collapse
Affiliation(s)
- Emma E Sumner
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - John W Morgan
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
| | - Susanna E Venn
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Integrative Ecology, Deakin University, Burwood, VIC 3125, Australia
| | - James S Camac
- Research Centre for Applied Alpine Ecology, La Trobe University, Bundoora, VIC 3086, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Lajoie G, Kembel SW. Plant-bacteria associations are phylogenetically structured in the phyllosphere. Mol Ecol 2021; 30:5572-5587. [PMID: 34411359 DOI: 10.1111/mec.16131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
Determining whether and how global change will lead to novel interactions between hosts and microbes is an important issue in ecology and evolution. Understanding the contribution of host and microbial ecologies and evolutionary histories in driving their contemporary associations is an important step towards addressing this challenge and predicting the fitness consequences of novel associations. Using shotgun metagenomic and amplicon sequencing of bacterial communities from the leaf surfaces (phyllosphere) of trees, we investigated how phylogenetic relatedness among hosts and among their associated bacteria influences the distribution of bacteria among hosts. We also evaluated whether the functional traits of trees and bacteria explained these associations across multiple host species. We show that phylogenetically similar hosts tended to associate with the same bacteria and that phylogenetically similar bacteria tended to associate with the same host species. Phylogenetic interactions between tree and bacterial taxa also explained variation in their associations. The effect of host and symbiont evolutionary histories on bacterial distribution across hosts were observed across phylogenetic scales, but prominently explained variation among higher taxonomic categories of hosts and symbionts. These results suggest that ecological variation arising early in the plant and bacterial phylogenies have been particularly important for driving their contemporary associations. Variation in bacterial functional genes associated with the biosynthesis of aromatic amino acids and compounds and with cell motility were notably important in explaining bacterial community turnover among gymnosperm and angiosperm hosts. Overall, our results suggest an influence of host and bacterial traits and evolutionary histories in driving their contemporary associations.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC, H2X 1Y4, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
3
|
Muletz-Wolz CR, Fleischer RC, Lips KR. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol 2019; 28:2917-2931. [PMID: 31066947 DOI: 10.1111/mec.15122] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen-microbiome-host interactions, which can lead to variation in disease outcome. The skin microbiome of red-backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti-Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti-Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti-Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd-resistant species.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Department of Biology, University of Maryland, College Park, Maryland.,Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|