1
|
Arias EA, Schatz AM, Kliefoth SE, Rooks EC, Edgerly JS. A history of susceptibility to parasites and divergence in solitary, gregarious and agonistic behaviors of embiopterans. ENVIRONMENTAL ENTOMOLOGY 2024; 53:921-934. [PMID: 39388638 DOI: 10.1093/ee/nvae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
Two species of Haploembia Ramburi (Oligotomidae: Embioptera), nonnative detritivores found in the western USA, display solitary tendencies, not typical for webspinners that usually share silk galleries. Reports from the 1960s based on native populations in Italy highlighted the impact of a gregarine that depressed male sterility and female survivorship in Haploembia solieri (Rambur). Sympatric asexual Haploembia tarsalis (Ross) lives a normal lifespan when parasitized, albeit suffering from reduced fecundity. Our goal is to characterize behavioral repertoires as individuals interact and to develop methods for future investigations focused on the impact of the little-known parasite. We quantified individual responses to conspecifics or other species in 10-min dyadic interactions and, in a 3-day trial, determined whether they aggregated when given dispersed resources. Replicated groups of four adult female H. solieri or H. tarsalis settled away from each other over the 3-day trials. In 10-min bouts of same or different species pairs, focal insects bolted back, retreated and attempted to escape when they encountered one another, especially when the opponent was H. tarsalis. Males courted conspecific females, but were dramatically repelled by H. tarsalis. Serving as a positive control, Oligotoma nigra (Hagen) (Oligotomidae) adult females paired with conspecifics displayed typical webspinner behaviors by sitting together, sharing silk. Haploembia solieri males did not respond negatively to O. nigra, not known to be parasitized by the gregarine, but did so when paired with H. tarsalis. Results align with the prediction that susceptibility to parasitism may have led to antisocial behaviors observed in two Haploembia species.
Collapse
Affiliation(s)
- Emily A Arias
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | - Andrew M Schatz
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | | | - Edward C Rooks
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| | - Janice S Edgerly
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| |
Collapse
|
2
|
Dziuba MK, McIntire KM, Davenport ES, Baird E, Huerta C, Jaye R, Corcoran F, McCreadie P, Nelson T, Duffy MA. Microsporidian coinfection reduces fitness of a fungal pathogen due to rapid host mortality. mBio 2024; 15:e0058324. [PMID: 39194186 PMCID: PMC11481536 DOI: 10.1128/mbio.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Infection outcomes can be strongly context dependent, shifting a host-symbiont relationship along a parasitism-mutualism continuum. Numerous studies show that under stressful conditions, symbionts that are typically mutualistic can become parasitic. The reverse possibility, a parasite becoming mutualistic, has received much less study. We investigated whether the parasitic microsporidium Ordospora pajunii can become beneficial for its host Daphnia dentifera in the presence of the more virulent fungal pathogen Metschnikowia bicuspidata. We found that, even though infection with O. pajunii reduces the frequency of penetration of M. bicuspidata spores into the host body cavity, it does not improve the survival or reproduction of the host; conversely, coinfection increased the mortality of Daphnia. This shorter lifespan of coinfected hosts disrupted the life cycle of M. bicuspidata, greatly reducing its fitness. Thus, coinfection with both pathogens was detrimental to the host at the individual level but might be beneficial for the host population as a result of greatly reduced production of M. bicuspidata spores. If so, this would mean that O. pajunii outbreaks should delay or prevent M. bicuspidata outbreaks. In support of this, in an analysis of dynamics of naturally occurring outbreaks in two lakes where these pathogens co-occur, we found a time lag in occurrence between O. pajunii and M. bicuspidata, with M. bicuspidata epidemics only occurring after the collapse of O. pajunii epidemics. Thus, these results suggest that the interaction between co-occurring symbionts, and the net impact of a symbiont on a host, might be qualitatively different at different scales.IMPORTANCEUnderstanding the factors that modify infection probability and virulence is crucial for identifying the drivers of infection outbreaks and modeling disease epidemic progression, and increases our ability to control diseases and reduce the harm they cause. One factor that can strongly influence infection probability and virulence is the presence of other pathogens. However, while coexposures and coinfections are incredibly common, we still have only a limited understanding of how pathogen interactions alter infection outcomes or whether their impacts are scale dependent. We used a system of one host and two pathogens to show that sequential coinfection can have a tremendous impact on the host and the infecting pathogens and that the outcome of (co-)infection can be negative or positive depending on the focal organization level.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paige McCreadie
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Taleah Nelson
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Segoli M, Papegay Y, Rozenberg T, Wajnberg E. Why do predators attack parasitized prey? Insights from a probabilistic model and a literature survey. Behav Processes 2024; 216:105002. [PMID: 38336239 DOI: 10.1016/j.beproc.2024.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Predators and parasitoids often encounter parasitized prey or hosts during foraging. While the outcomes of such encounters have been extensively studied for insect parasitoids, the consequences of a predator encountering parasitized prey have received less attention. One extreme example involves the potter wasp Delta dimidiatipenne that frequently provision their nest with parasitized caterpillars, despite the low suitability of this prey for consumption by their offspring. This raises two main questions: (1) why do female potter wasps continue collecting parasitized caterpillars? and (2) is this an exceptional example, or do predatory insects often suffer from fitness costs due to encounters with parasitized prey? We addressed the first question using a probabilistic mathematical model predicting the value of discrimination between parasitized and unparasitized prey for the potter wasp, and the second question by surveying the literature for examples in which the parasitism status of prey affected prey susceptibility, suitability, or prey choice by a predator. The model demonstrates that only under certain conditions is discrimination against parasitized prey beneficial in terms of the potter wasp's lifetime reproductive success. The literature survey suggests that the occurrence of encounters and consumption of parasitized prey is common, but the overall consequences of such interactions have rarely been quantified. We conclude that the profitability and ability of a predator to discriminate against parasitized prey under natural conditions may be limited and call for additional studies quantifying the outcome of such interactions.
Collapse
Affiliation(s)
- Michal Segoli
- Marco and Louise Mitrani Department of Desert Ecology, SIDEER, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| | - Yves Papegay
- INRIA, Sophia Antipolis, Projet Hephaistos, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
| | - Tamir Rozenberg
- Marco and Louise Mitrani Department of Desert Ecology, SIDEER, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Eric Wajnberg
- INRIA, Sophia Antipolis, Projet Hephaistos, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France; INRAE, 400 Route des Chappes, 06903 Sophia Antipolis Cedex, France; USP/ESALQ, Departamento de Entomologia e Acarologia, Piracicaba, Brazil
| |
Collapse
|
4
|
Jensen CH, Weidner J, Giske J, Jørgensen C, Eliassen S, Mennerat A. Adaptive host responses to infection can resemble parasitic manipulation. Ecol Evol 2023; 13:e10318. [PMID: 37456066 PMCID: PMC10349281 DOI: 10.1002/ece3.10318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.
Collapse
Affiliation(s)
| | | | - Jarl Giske
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Sigrunn Eliassen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Adèle Mennerat
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
5
|
Durand PM, Ramsey G. The concepts and origins of cell mortality. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:23. [PMID: 37289372 DOI: 10.1007/s40656-023-00581-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
Organismal death is foundational to the evolution of life, and many biological concepts such as natural selection and life history strategy are so fashioned only because individuals are mortal. Organisms, irrespective of their organization, are composed of basic functional units-cells-and it is our understanding of cell death that lies at the heart of most general explanatory frameworks for organismal mortality. Cell death can be exogenous, arising from transmissible diseases, predation, or other misfortunes, but there are also endogenous forms of death that are sometimes the result of adaptive evolution. These endogenous forms of death-often labeled programmed cell death, PCD-originated in the earliest cells and are maintained across the tree of life. Here, we consider two problematic issues related to PCD (and cell mortality generally). First, we trace the original discoveries of cell death from the nineteenth century and place current conceptions of PCD in their historical context. Revisions of our understanding of PCD demand a reassessment of its origin. Our second aim is thus to structure the proposed origin explanations of PCD into coherent arguments. In our analysis we argue for the evolutionary concept of PCD and the viral defense-immunity hypothesis for the origin of PCD. We suggest that this framework offers a plausible account of PCD early in the history of life, and also provides an epistemic basis for the future development of a general evolutionary account of mortality.
Collapse
Affiliation(s)
- Pierre M Durand
- Department of Philosophy, Stellenbosch University, Stellenbosch, South Africa.
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Purkiss SA, Khudr MS, Aguinaga OE, Hager R. Symbiont-conferred immunity interacts with effects of parasitoid genotype and intraguild predation to affect aphid immunity in a clone-specific fashion. BMC Ecol Evol 2022; 22:33. [PMID: 35305557 PMCID: PMC8934488 DOI: 10.1186/s12862-022-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Host-parasite interactions represent complex co-evolving systems in which genetic and associated phenotypic variation within a species can significantly affect selective pressures on traits, such as host immunity, in the other. While often modelled as a two-species interaction between host and parasite, some systems are more complex due to effects of host enemies, intraguild predation, and endosymbionts, all of which affect host immunity. However, it remains unclear how these factors, combined with genetic variation in the host and the parasitoid, affect host immunity. We address this question in an important agricultural pest system, the pea aphid Acyrthosiphon pisum, which shows significant intraspecific variability in immunity to the parasitoid wasp Aphidius ervi. In a complex experiment, we use a quantitative genetic design in the parasitoid, two ecologically different aphid lineages and the aphid lion Chrysoperla carnea as an intraguild predator to unravel the complex interdependencies. Results We demonstrate that aphid immunity as a key trait of this complex host-parasite system is affected by intraspecific genetic variation in the parasitoid and the aphid, the interaction of intraspecific genetic variation with intraguild predation, and differences in defensive endosymbionts between aphid lineages. Further, aphid lineages differ in their altruistic behaviour whereby infested aphids move away from the clonal colony to facilitate predation. Conclusions Our findings provide new insights into the influence of endosymbiosis and genetic variability in an important host-parasitoid system which is influenced by natural enemies of the parasitoid and the aphid, including its endosymbiont communities. We show that endosymbiosis can mediate or influence the evolutionary arms race between aphids and their natural enemies. The outcome of these complex interactions between species has significant implications for understanding the evolution of multitrophic systems, including eco-agricultural settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01991-1.
Collapse
Affiliation(s)
- Samuel Alexander Purkiss
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Mouhammad Shadi Khudr
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Oscar Enrique Aguinaga
- Departamento de Ingeniería, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
Chatterjee D, Rai R. Choosing Death Over Survival: A Need to Identify Evolutionary Mechanisms Underlying Human Suicide. Front Psychol 2021; 12:689022. [PMID: 34803791 PMCID: PMC8595259 DOI: 10.3389/fpsyg.2021.689022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
The act of killing self contradicts the central purpose of human evolution, that is, survival and propagation of one’s genetic material. Yet, it continues to be one of the leading causes of human death. A handful of theories in the realm of evolutionary psychology have attempted to explain human suicide. The current article analyses the major components of certain prominent viewpoints, namely, Inclusive fitness, Bargaining model, Pain-Brain model, Psychological aposematism, and few other perspectives. The article argues that relatively more weightage has been given to understanding ultimate (the “why”) rather than proximate (the “how”) functionality of suicidal acts. Evolutionary theorists have consistently pointed out that to comprehensively understand a trait or behavior, one needs to delineate not only how it supports survival but also the evolution of the mechanisms underlying the trait or behavior. Existing theories on suicide have primarily focused on its fitness benefits on surviving kin instead of providing evolutionary explanations of the more complex mechanisms leading up to such self-destructive motivations. Thus, the current paper attempts to highlight this gap in theorizing while suggesting probable proximate explanations of suicide which stresses the need to diffuse attention paid to fitness consequences of the act alone. We speculate that such explorations are needed in order to build a robust and comprehensive evolutionary theory of human suicide.
Collapse
Affiliation(s)
- Diya Chatterjee
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kharagpur, India
| | - Rishabh Rai
- Department of Humanities and Social Sciences, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
8
|
Mullon C, Wakano JY, Ohtsuki H. Coevolutionary dynamics of genetic traits and their long-term extended effects under non-random interactions. J Theor Biol 2021; 525:110750. [PMID: 33957155 DOI: 10.1016/j.jtbi.2021.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022]
Abstract
Organisms continuously modify their living conditions via extended genetic effects on their environment, microbiome, and in some species culture. These effects can impact the fitness of current but also future conspecifics due to non-genetic transmission via ecological or cultural inheritance. In this case, selection on a gene with extended effects depends on the degree to which current and future genetic relatives are exposed to modified conditions. Here, we detail the selection gradient on a quantitative trait with extended effects in a patch-structured population, when gene flow between patches is limited and ecological inheritance within patches can be biased towards offspring. Such a situation is relevant to understand evolutionary driven changes in individual condition that can be preferentially transmitted from parent to offspring, such as cellular state, micro-environments (e.g., nests), pathogens, microbiome, or culture. Our analysis quantifies how the interaction between limited gene flow and biased ecological inheritance influences the joint evolutionary dynamics of traits together with the conditions they modify, helping understand adaptation via non-genetic modifications. As an illustration, we apply our analysis to a gene-culture coevolution scenario in which genetically-determined learning strategies coevolve with adaptive knowledge. In particular, we show that when social learning is synergistic, selection can favour strategies that generate remarkable levels of knowledge under intermediate levels of both vertical cultural transmission and limited dispersal. More broadly, our theory yields insights into the interplay between genetic and non-genetic inheritance, with implications for how organisms evolve to transform their environments.
Collapse
Affiliation(s)
- Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | - Joe Yuichiro Wakano
- Meiji Institute for Advanced Study of Mathematical Sciences, Nakano, Tokyo 164-8525, Japan
| | - Hisashi Ohtsuki
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
9
|
The Adaptiveness of Host Behavioural Manipulation Assessed Using Tinbergen's Four Questions. Trends Parasitol 2021; 37:597-609. [PMID: 33568325 DOI: 10.1016/j.pt.2021.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Host organisms show altered phenotypic reactions when parasitised, some of which result from adaptive host manipulation, a phenomenon that has long been debated. Here, we provide an overview and discuss the rationale in distinguishing adaptive versus nonadaptive host behavioural manipulation. We discuss Poulin's criteria of adaptive host behavioural manipulation within the context of Tinbergen's four questions of ethology, while highlighting the importance of both the proximate and evolutionary explanations of such traits. We also provide guidelines for future studies exploring the adaptiveness of host behavioural manipulation. Through this article, we seek to encourage researchers to consider both the proximate and ultimate causes of host behavioural manipulation to infer on the adaptiveness of such traits.
Collapse
|