1
|
Romeu MJ, Mergulhão F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023; 11:1568. [PMID: 37375070 DOI: 10.3390/microorganisms11061568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Marine biofouling is an undeniable challenge for aquatic systems since it is responsible for several environmental and ecological problems and economic losses. Several strategies have been developed to mitigate fouling-related issues in marine environments, including developing marine coatings using nanotechnology and biomimetic models, and incorporating natural compounds, peptides, bacteriophages, or specific enzymes on surfaces. The advantages and limitations of these strategies are discussed in this review, and the development of novel surfaces and coatings is highlighted. The performance of these novel antibiofilm coatings is currently tested by in vitro experiments, which should try to mimic real conditions in the best way, and/or by in situ tests through the immersion of surfaces in marine environments. Both forms present their advantages and limitations, and these factors should be considered when the performance of a novel marine coating requires evaluation and validation. Despite all the advances and improvements against marine biofouling, progress toward an ideal operational strategy has been slow given the increasingly demanding regulatory requirements. Recent developments in self-polishing copolymers and fouling-release coatings have yielded promising results which set the basis for the development of more efficient and eco-friendly antifouling strategies.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Kichouh-Aiadi S, Sánchez-Mirón A, Gallardo-Rodríguez JJ, Soriano-Jerez Y, Cerón-García MC, García-Camacho F, Molina-Grima E. CFD-based prediction of initial microalgal adhesion to solid surfaces using force balances. BIOFOULING 2021; 37:844-861. [PMID: 34538160 DOI: 10.1080/08927014.2021.1974847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Adhesion of microalgal cells to photobioreactor walls reduces productivity resulting in significant economic losses. The physico-chemical surface properties and the fluid dynamics present in the photobioreactor during cultivation are relevant. However, to date, no multiphysical model has been able to predict biofouling formation in these systems. In this work, to model the microalgal adhesion, a Computational Fluid Dynamic simulation was performed using a Eulerian-Lagrangian particle-tracking model. The adhesion criterion was based on the balance of forces and moments included in the XDLVO model. A cell suspension of the marine microalga Nannochloropsis gaditana was fed into a commercial flow cell composed of poly-methyl-methacrylate coupons for validation. Overall, the simulated adhesion criterion qualitatively predicted the initial distribution of adhered cells on the coupons. In conclusion, the combined Computational Fluid Dynamics-Discrete Phase Model (CFD-DPM) approach can be used to overcome the challenge of predicting microalgal cell adhesion in photobioreactors.
Collapse
Affiliation(s)
- S Kichouh-Aiadi
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - J J Gallardo-Rodríguez
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| | - E Molina-Grima
- Department of Chemical Engineering, Research Centre CIAMBITAL, University of Almería, Almería, Spain
| |
Collapse
|
3
|
Zeriouh O, Reinoso-Moreno J, López-Rosales L, Cerón-García M, Sánchez Mirón A, García-Camacho F, Molina-Grima E. Assessment of a photobioreactor-coupled modified Robbins device to compare the adhesion of Nannochloropsis gaditana on different materials. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Nolte KA, Schwarze J, Rosenhahn A. Microfluidic accumulation assay probes attachment of biofilm forming diatom cells. BIOFOULING 2017; 33:531-543. [PMID: 28675050 DOI: 10.1080/08927014.2017.1328058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Testing of fouling release (FR) technologies is of great relevance for discovery of the next generation of protective marine coatings. In this paper, an accumulation assay to test diatom interaction under laminar flow with the model organism Navicula perminuta is introduced. Using time lapse microscopy with large area sampling allows determination of the accumulation kinetics of the diatom on three model surfaces with different surface properties at different wall shear stresses. The hydrodynamic conditions within the flow cell are described and a suitable shear stress range to perform accumulation experiments is identified at which statistically significant discrimination of surfaces is possible. The observed trends compare well to published adhesion preferences of N. perminuta. Also, previously determined trends of critical wall shear stresses required for cell removal from the same set of functionalized interfaces shows consistent trends. Initial attachment mediated by extracellular polymeric substances (EPS) present outside the diatoms leads to the conclusion that the FR potential of the tested coating candidates can be deducted from dynamic accumulation experiments under well-defined hydrodynamic conditions. As well as testing new coating candidates for their FR properties, monitoring of the adhesion process under flow provides additional information on the mechanism and geometry of attachment and the population kinetics.
Collapse
Affiliation(s)
- Kim A Nolte
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Jana Schwarze
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Axel Rosenhahn
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| |
Collapse
|
5
|
Dimartino S, Savory DM, Fraser-Miller SJ, Gordon KC, McQuillan AJ. Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species Durvillaea antarctica and Hormosira banksii. J R Soc Interface 2016; 13:20151083. [PMID: 27122179 PMCID: PMC4874429 DOI: 10.1098/rsif.2015.1083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/31/2016] [Indexed: 11/12/2022] Open
Abstract
Adhesives from marine organisms are often the source of inspiration for the development of glues able to create durable bonds in wet environments. In this work, we investigated the adhesive secretions produced by germlings of two large seaweed species from the South Pacific, Durvillaea antarctica, also named 'the strongest kelp in the word', and its close relative Hormosira banksii The comparative analysis was based on optical and scanning electron microscopy imaging as well as Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA). For both species, the egg surface presents peripheral vesicles which are released soon after fertilization to discharge a primary adhesive. This is characterized by peaks representative of carbohydrate molecules. A secondary protein-based adhesive is then secreted in the early developmental stages of the germlings. Energy dispersive X-ray, FTIR and PCA indicate that D. antarctica secretions also contain sulfated moieties, and become cross-linked with time, both conferring strong adhesive and cohesive properties. On the other hand, H. banksii secretions are complemented by the putative adhesive phlorotannins, and are characterized by a simple mechanism in which all constituents are released with the same rate and with no apparent cross-linking. It is also noted that the release of adhesive materials appears to be faster and more copious in D. antarctica than in H. banksii Overall, this study highlights that both quantity and quality of the adhesives matter in explaining the superior attachment ability of D. antarctica.
Collapse
Affiliation(s)
- Simone Dimartino
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - David M Savory
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sara J Fraser-Miller
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand The Dodd-Walls Centre, University of Otago, Dunedin 9054, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand The Dodd-Walls Centre, University of Otago, Dunedin 9054, New Zealand
| | - A James McQuillan
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Affiliation(s)
- Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons—UMONS, 23 Place du Parc, Mons 7000, Belgium
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária, Universidade de Lisboa, Cidade Universitária, Lisboa 1649-003, Portugal
| |
Collapse
|
7
|
Alles M, Rosenhahn A. Microfluidic detachment assay to probe the adhesion strength of diatoms. BIOFOULING 2015; 31:469-480. [PMID: 26168802 DOI: 10.1080/08927014.2015.1061655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly.
Collapse
Affiliation(s)
- M Alles
- a Applied Physical Chemistry , Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | | |
Collapse
|