1
|
Sappington A, Mohanty V. Probabilistic Genotype-Phenotype Maps Reveal Mutational Robustness of RNA Folding, Spin Glasses, and Quantum Circuits. ARXIV 2025:arXiv:2301.01847v3. [PMID: 36713233 PMCID: PMC9882568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies of genotype-phenotype (GP) maps have reported universally enhanced phenotypic robustness to genotype mutations, a feature essential to evolution. Virtually all of these studies make a simplifying assumption that each genotype-represented as a sequence-maps deterministically to a single phenotype, such as a discrete structure. Here, we introduce probabilistic genotype-phenotype (PrGP) maps, where each genotype maps to a vector of phenotype probabilities, as a more realistic and universal language for investigating robustness in a variety of physical, biological, and computational systems. We study three model systems to show that PrGP maps offer a generalized framework which can handle uncertainty emerging from various physical sources: (1) thermal fluctuation in RNA folding, (2) external field disorder in spin glass ground state finding, and (3) superposition and entanglement in quantum circuits, which are realized experimentally on IBM quantum computers. In all three cases, we observe a novel biphasic robustness scaling which is enhanced relative to random expectation for more frequent phenotypes and approaches random expectation for less frequent phenotypes. We derive an analytical theory for the behavior of PrGP robustness, and we demonstrate that the theory is highly predictive of empirical robustness.
Collapse
Affiliation(s)
- Anna Sappington
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program for Health Sciences and Technology, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vaibhav Mohanty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Program for Health Sciences and Technology, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115 and Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Martin NS, Schaper S, Camargo CQ, Louis AA. Non-Poissonian Bursts in the Arrival of Phenotypic Variation Can Strongly Affect the Dynamics of Adaptation. Mol Biol Evol 2024; 41:msae085. [PMID: 38693911 PMCID: PMC11156200 DOI: 10.1093/molbev/msae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Modeling the rate at which adaptive phenotypes appear in a population is a key to predicting evolutionary processes. Given random mutations, should this rate be modeled by a simple Poisson process, or is a more complex dynamics needed? Here we use analytic calculations and simulations of evolving populations on explicit genotype-phenotype maps to show that the introduction of novel phenotypes can be "bursty" or overdispersed. In other words, a novel phenotype either appears multiple times in quick succession or not at all for many generations. These bursts are fundamentally caused by statistical fluctuations and other structure in the map from genotypes to phenotypes. Their strength depends on population parameters, being highest for "monomorphic" populations with low mutation rates. They can also be enhanced by additional inhomogeneities in the mapping from genotypes to phenotypes. We mainly investigate the effect of bursts using the well-studied genotype-phenotype map for RNA secondary structure, but find similar behavior in a lattice protein model and in Richard Dawkins's biomorphs model of morphological development. Bursts can profoundly affect adaptive dynamics. Most notably, they imply that fitness differences play a smaller role in determining which phenotype fixes than would be the case for a Poisson process without bursts.
Collapse
Affiliation(s)
- Nora S Martin
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Steffen Schaper
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Chico Q Camargo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
- Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
3
|
Martin NS, Ahnert SE. The Boltzmann distributions of molecular structures predict likely changes through random mutations. Biophys J 2023; 122:4467-4475. [PMID: 37897043 PMCID: PMC10698324 DOI: 10.1016/j.bpj.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
New folded molecular structures can only evolve after arising through mutations. This aspect is modeled using genotype-phenotype maps, which connect sequence changes through mutations to changes in molecular structures. Previous work has shown that the likelihood of appearing through mutations can differ by orders of magnitude from structure to structure and that this can affect the outcomes of evolutionary processes. Thus, we focus on the phenotypic mutation probabilities φqp, i.e., the likelihood that a random mutation changes structure p into structure q. For both RNA secondary structures and the HP protein model, we show that a simple biophysical principle can explain and predict how this likelihood depends on the new structure q: φqp is high if sequences that fold into p as the minimum-free-energy structure are likely to have q as an alternative structure with high Boltzmann frequency. This generalizes the existing concept of plastogenetic congruence from individual sequences to the entire neutral spaces of structures. Our result helps us understand why some structural changes are more likely than others, may be useful for estimating these likelihoods via sampling and makes a connection to alternative structures with high Boltzmann frequency, which could be relevant in evolutionary processes.
Collapse
Affiliation(s)
- Nora S Martin
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom; Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom; The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
4
|
Mohanty V, Greenbury SF, Sarkany T, Narayanan S, Dingle K, Ahnert SE, Louis AA. Maximum mutational robustness in genotype-phenotype maps follows a self-similar blancmange-like curve. J R Soc Interface 2023; 20:20230169. [PMID: 37491910 PMCID: PMC10369032 DOI: 10.1098/rsif.2023.0169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Phenotype robustness, defined as the average mutational robustness of all the genotypes that map to a given phenotype, plays a key role in facilitating neutral exploration of novel phenotypic variation by an evolving population. By applying results from coding theory, we prove that the maximum phenotype robustness occurs when genotypes are organized as bricklayer's graphs, so-called because they resemble the way in which a bricklayer would fill in a Hamming graph. The value of the maximal robustness is given by a fractal continuous everywhere but differentiable nowhere sums-of-digits function from number theory. Interestingly, genotype-phenotype maps for RNA secondary structure and the hydrophobic-polar (HP) model for protein folding can exhibit phenotype robustness that exactly attains this upper bound. By exploiting properties of the sums-of-digits function, we prove a lower bound on the deviation of the maximum robustness of phenotypes with multiple neutral components from the bricklayer's graph bound, and show that RNA secondary structure phenotypes obey this bound. Finally, we show how robustness changes when phenotypes are coarse-grained and derive a formula and associated bounds for the transition probabilities between such phenotypes.
Collapse
Affiliation(s)
- Vaibhav Mohanty
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
- Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- MD-PhD Program, Harvard Medical School, Boston, MA, USA and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sam F. Greenbury
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, British Library, London, UK
| | - Tasmin Sarkany
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shyam Narayanan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamaludin Dingle
- Department of Mathematics and Natural Sciences, Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University of Science and Technology, Kuwait
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Sebastian E. Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, British Library, London, UK
| | - Ard A. Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Random and Natural Non-Coding RNA Have Similar Structural Motif Patterns but Differ in Bulge, Loop, and Bond Counts. Life (Basel) 2023; 13:life13030708. [PMID: 36983865 PMCID: PMC10054693 DOI: 10.3390/life13030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
An important question in evolutionary biology is whether (and in what ways) genotype–phenotype (GP) map biases can influence evolutionary trajectories. Untangling the relative roles of natural selection and biases (and other factors) in shaping phenotypes can be difficult. Because the RNA secondary structure (SS) can be analyzed in detail mathematically and computationally, is biologically relevant, and a wealth of bioinformatic data are available, it offers a good model system for studying the role of bias. For quite short RNA (length L≤126), it has recently been shown that natural and random RNA types are structurally very similar, suggesting that bias strongly constrains evolutionary dynamics. Here, we extend these results with emphasis on much larger RNA with lengths up to 3000 nucleotides. By examining both abstract shapes and structural motif frequencies (i.e., the number of helices, bonds, bulges, junctions, and loops), we find that large natural and random structures are also very similar, especially when contrasted to typical structures sampled from the spaces of all possible RNA structures. Our motif frequency study yields another result, where the frequencies of different motifs can be used in machine learning algorithms to classify random and natural RNA with high accuracy, especially for longer RNA (e.g., ROC AUC 0.86 for L = 1000). The most important motifs for classification are the number of bulges, loops, and bonds. This finding may be useful in using SS to detect candidates for functional RNA within ‘junk’ DNA regions.
Collapse
|
6
|
Mohanty V, Louis AA. Robustness and stability of spin-glass ground states to perturbed interactions. Phys Rev E 2023; 107:014126. [PMID: 36797942 DOI: 10.1103/physreve.107.014126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Across many problems in science and engineering, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we investigate the glassy phase of ±J spin glasses at zero temperature by calculating the robustness of the ground states to flips in the sign of single interactions. For random graphs and the Sherrington-Kirkpatrick model, we find relatively large sets of bond configurations that generate the same ground state. These sets can themselves be analyzed as subgraphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness, equivalent to the average degree, of these subgraphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the subgraph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin.
Collapse
Affiliation(s)
- Vaibhav Mohanty
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, United Kingdom
- MD-PhD Program and Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02125, USA and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, United Kingdom
| |
Collapse
|
7
|
Dingle K, Novev JK, Ahnert SE, Louis AA. Predicting phenotype transition probabilities via conditional algorithmic probability approximations. J R Soc Interface 2022; 19:20220694. [PMID: 36514888 PMCID: PMC9748496 DOI: 10.1098/rsif.2022.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Unravelling the structure of genotype-phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover simplicity bias in GP maps, an exponentially decaying upper bound in phenotype probability with the increasing phenotype descriptional complexity. This means that phenotypes with many genotypes assigned via the GP map must be simple, while complex phenotypes must have few genotypes assigned. Here, we use similar arguments to bound the probability P(x → y) that phenotype x, upon random genetic mutation, transitions to phenotype y. The bound is [Formula: see text], where [Formula: see text] is the estimated conditional complexity of y given x, quantifying how much extra information is required to make y given access to x. This upper bound is related to the conditional form of algorithmic probability from AIT. We demonstrate the practical applicability of our derived bound by predicting phenotype transition probabilities (and other related quantities) in simulations of RNA and protein secondary structures. Our work contributes to a general mathematical understanding of GP maps and may facilitate the prediction of transition probabilities directly from examining phenotype themselves, without utilizing detailed knowledge of the GP map.
Collapse
Affiliation(s)
- Kamaludin Dingle
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge CB2 1TN, UK
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Mathematics and Natural Sciences, Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, 32093, Kuwait
| | - Javor K. Novev
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge CB2 1TN, UK
| | - Sebastian E. Ahnert
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge CB2 1TN, UK
| | - Ard A. Louis
- Department of Physics, Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 2JD, UK
| |
Collapse
|
8
|
Manrubia S, Cuesta JA, Aguirre J, Ahnert SE, Altenberg L, Cano AV, Catalán P, Diaz-Uriarte R, Elena SF, García-Martín JA, Hogeweg P, Khatri BS, Krug J, Louis AA, Martin NS, Payne JL, Tarnowski MJ, Weiß M. The long and winding road to understanding organismal construction. Phys Life Rev 2022; 42:19-24. [DOI: 10.1016/j.plrev.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
|
9
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Martin NS, Ahnert SE. Fast free-energy-based neutral set size estimates for the RNA genotype-phenotype map. J R Soc Interface 2022; 19:20220072. [PMID: 35702868 PMCID: PMC9198509 DOI: 10.1098/rsif.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
The genotype-phenotype (GP) map of RNA secondary structure links each RNA sequence to its corresponding secondary structure. Previous research has shown that the large-scale structural properties of GP maps, such as the size of neutral sets in genotype space, can influence evolutionary outcomes. In order to use neutral set sizes, efficient and accurate computational methods are needed to compute them. Here, we propose a new method, which is based on free energy estimates and is much faster than existing sample-based methods. Moreover, this approach can give insight into the reasons behind neutral set size variations, for example, why structures with fewer stacks tend to have larger neutral set sizes. In addition, we generalize neutral set size calculations from the previously studied many-to-one framework, where each sequence folds into a single energetically preferred structure, to a fuller many-to-many framework, where several low-energy structures are included. We find that structures with high neutral sets in one framework also tend to have large neutral sets in the other framework for a range of parameters and thus the choice of GP map does not fundamentally affect which structures have the largest neutral set sizes.
Collapse
Affiliation(s)
- Nora S. Martin
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Sebastian E. Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- The Alan Turing Institute, British Library, Euston Road, London NW1 2DB, UK
| |
Collapse
|
11
|
Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proc Natl Acad Sci U S A 2022; 119:e2113883119. [PMID: 35275794 PMCID: PMC8931234 DOI: 10.1073/pnas.2113883119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SignificanceWhy does evolution favor symmetric structures when they only represent a minute subset of all possible forms? Just as monkeys randomly typing into a computer language will preferentially produce outputs that can be generated by shorter algorithms, so the coding theorem from algorithmic information theory predicts that random mutations, when decoded by the process of development, preferentially produce phenotypes with shorter algorithmic descriptions. Since symmetric structures need less information to encode, they are much more likely to appear as potential variation. Combined with an arrival-of-the-frequent mechanism, this algorithmic bias predicts a much higher prevalence of low-complexity (high-symmetry) phenotypes than follows from natural selection alone and also explains patterns observed in protein complexes, RNA secondary structures, and a gene regulatory network.
Collapse
|
12
|
Dingle K, Ghaddar F, Šulc P, Louis AA. Phenotype Bias Determines How Natural RNA Structures Occupy the Morphospace of All Possible Shapes. Mol Biol Evol 2022; 39:msab280. [PMID: 34542628 PMCID: PMC8763027 DOI: 10.1093/molbev/msab280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Morphospaces-representations of phenotypic characteristics-are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype-phenotype map, a type of developmental bias or "findability constraint," which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to "find."
Collapse
Affiliation(s)
- Kamaludin Dingle
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Fatme Ghaddar
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Roy S, Sengupta S. Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world. Proc Biol Sci 2021; 288:20212098. [PMID: 34784760 PMCID: PMC8596018 DOI: 10.1098/rspb.2021.2098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
The encapsulation of genetic material inside compartments together with the creation and sustenance of functionally diverse internal components are likely to have been key steps in the formation of 'live', replicating protocells in an RNA world. Several experiments have shown that RNA encapsulated inside lipid vesicles can lead to vesicular growth and division through physical processes alone. Replication of RNA inside such vesicles can produce a large number of RNA strands. Yet, the impact of such replication processes on the emergence of the first ribozymes inside such protocells and on the subsequent evolution of the protocell population remains an open question. In this paper, we present a model for the evolution of protocells with functionally diverse ribozymes. Distinct ribozymes can be created with small probabilities during the error-prone RNA replication process via the rolling circle mechanism. We identify the conditions that can synergistically enhance the number of different ribozymes inside a protocell and allow functionally diverse protocells containing multiple ribozymes to dominate the population. Our work demonstrates the existence of an effective pathway towards increasing complexity of protocells that might have eventually led to the origin of life in an RNA world.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| |
Collapse
|
14
|
Martin NS, Ahnert SE. Insertions and deletions in the RNA sequence-structure map. J R Soc Interface 2021; 18:20210380. [PMID: 34610259 PMCID: PMC8492174 DOI: 10.1098/rsif.2021.0380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Genotype-phenotype maps link genetic changes to their fitness effect and are thus an essential component of evolutionary models. The map between RNA sequences and their secondary structures is a key example and has applications in functional RNA evolution. For this map, the structural effect of substitutions is well understood, but models usually assume a constant sequence length and do not consider insertions or deletions. Here, we expand the sequence-structure map to include single nucleotide insertions and deletions by using the RNAshapes concept. To quantify the structural effect of insertions and deletions, we generalize existing definitions for robustness and non-neutral mutation probabilities. We find striking similarities between substitutions, deletions and insertions: robustness to substitutions is correlated with robustness to insertions and, for most structures, to deletions. In addition, frequent structural changes after substitutions also tend to be common for insertions and deletions. This is consistent with the connection between energetically suboptimal folds and possible structural transitions. The similarities observed hold both for genotypic and phenotypic robustness and mutation probabilities, i.e. for individual sequences and for averages over sequences with the same structure. Our results could have implications for the rate of neutral and non-neutral evolution.
Collapse
Affiliation(s)
- Nora S. Martin
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sebastian E. Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- The Alan Turing Institute, British Library, Euston Road, London NW1 2DB, UK
| |
Collapse
|
15
|
Manrubia S, Cuesta JA, Aguirre J, Ahnert SE, Altenberg L, Cano AV, Catalán P, Diaz-Uriarte R, Elena SF, García-Martín JA, Hogeweg P, Khatri BS, Krug J, Louis AA, Martin NS, Payne JL, Tarnowski MJ, Weiß M. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys Life Rev 2021; 38:55-106. [PMID: 34088608 DOI: 10.1016/j.plrev.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.
Collapse
Affiliation(s)
- Susanna Manrubia
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, Spain; UC3M-Santander Big Data Institute (IBiDat), Getafe, Madrid, Spain
| | - Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Centro de Astrobiología, CSIC-INTA, ctra. de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| | | | - Alejandro V Cano
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain; Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC), Madrid, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, I(2)SysBio (CSIC-UV), València, Spain; The Santa Fe Institute, Santa Fe, NM, USA
| | | | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics Group, Utrecht University, the Netherlands
| | - Bhavin S Khatri
- The Francis Crick Institute, London, UK; Department of Life Sciences, Imperial College London, London, UK
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Köln, Germany
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Nora S Martin
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK; Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Hagolani PF, Zimm R, Vroomans R, Salazar-Ciudad I. On the evolution and development of morphological complexity: A view from gene regulatory networks. PLoS Comput Biol 2021; 17:e1008570. [PMID: 33626036 PMCID: PMC7939363 DOI: 10.1371/journal.pcbi.1008570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2021] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
How does morphological complexity evolve? This study suggests that the likelihood of mutations increasing phenotypic complexity becomes smaller when the phenotype itself is complex. In addition, the complexity of the genotype-phenotype map (GPM) also increases with the phenotypic complexity. We show that complex GPMs and the above mutational asymmetry are inevitable consequences of how genes need to be wired in order to build complex and robust phenotypes during development. We randomly wired genes and cell behaviors into networks in EmbryoMaker. EmbryoMaker is a mathematical model of development that can simulate any gene network, all animal cell behaviors (division, adhesion, apoptosis, etc.), cell signaling, cell and tissues biophysics, and the regulation of those behaviors by gene products. Through EmbryoMaker we simulated how each random network regulates development and the resulting morphology (i.e. a specific distribution of cells and gene expression in 3D). This way we obtained a zoo of possible 3D morphologies. Real gene networks are not random, but a random search allows a relatively unbiased exploration of what is needed to develop complex robust morphologies. Compared to the networks leading to simple morphologies, the networks leading to complex morphologies have the following in common: 1) They are rarer; 2) They need to be finely tuned; 3) Mutations in them tend to decrease morphological complexity; 4) They are less robust to noise; and 5) They have more complex GPMs. These results imply that, when complexity evolves, it does so at a progressively decreasing rate over generations. This is because as morphological complexity increases, the likelihood of mutations increasing complexity decreases, morphologies become less robust to noise, and the GPM becomes more complex. We find some properties in common, but also some important differences, with non-developmental GPM models (e.g. RNA, protein and gene networks in single cells).
Collapse
Affiliation(s)
- Pascal F. Hagolani
- Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Roland Zimm
- Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Institute of Functional Genomics, École Normale Superieure, Lyon, France
- Konrad Lorenz Insititute for Evolution and Cognition Research, Vienna, Austria
| | - Renske Vroomans
- Origins Center, Nijenborgh, Groningen, The Netherlands
- Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Isaac Salazar-Ciudad
- Evo-devo Helsinki community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centre de Rercerca Matemàtica, Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Weiß M, Ahnert SE. Neutral components show a hierarchical community structure in the genotype-phenotype map of RNA secondary structure. J R Soc Interface 2020; 17:20200608. [PMID: 33081646 DOI: 10.1098/rsif.2020.0608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genotype-phenotype (GP) maps describe the relationship between biological sequences and structural or functional outcomes. They can be represented as networks in which genotypes are the nodes, and one-point mutations between them are the edges. The genotypes that map to the same phenotype form subnetworks consisting of one or multiple disjoint connected components-so-called neutral components (NCs). For the GP map of RNA secondary structure, the NCs have been found to exhibit distinctive network features that can affect the dynamical processes taking place on them. Here, we focus on the community structure of RNA secondary structure NCs. Building on previous findings, we introduce a method to reveal the hierarchical community structure solely from the sequence constraints and composition of the genotypes that form a given NC. Thereby, we obtain modularity values similar to common community detection algorithms, which are much more complex. From this knowledge, we endorse a sampling method that allows a fast exploration of the different communities of a given NC. Furthermore, we introduce a way to estimate the community structure from genotype samples, which is useful when an exhaustive analysis of the NC is not feasible, as is the case for longer sequence lengths.
Collapse
Affiliation(s)
- Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sebastian E Ahnert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.,The Alan Turing Institute, British Library, Euston Road, London NW1 2DB, UK
| |
Collapse
|
18
|
Catalán P, Manrubia S, Cuesta JA. Populations of genetic circuits are unable to find the fittest solution in a multilevel genotype-phenotype map. J R Soc Interface 2020; 17:20190843. [PMID: 32486956 PMCID: PMC7328398 DOI: 10.1098/rsif.2019.0843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 01/13/2023] Open
Abstract
The evolution of gene regulatory networks (GRNs) is of great relevance for both evolutionary and synthetic biology. Understanding the relationship between GRN structure and its function can allow us to understand the selective pressures that have shaped a given circuit. This is especially relevant when considering spatio-temporal expression patterns, where GRN models have been shown to be extremely robust and evolvable. However, previous models that studied GRN evolution did not include the evolution of protein and genetic elements that underlie GRN architecture. Here we use toyLIFE, a multilevel genotype-phenotype map, to show that not all GRNs are equally likely in genotype space and that evolution is biased to find the most common GRNs. toyLIFE rules create Boolean GRNs that, embedded in a one-dimensional tissue, develop a variety of spatio-temporal gene expression patterns. Populations of toyLIFE organisms choose the most common GRN out of a set of equally fit alternatives and, most importantly, fail to find a target pattern when it is very rare in genotype space. Indeed, we show that the probability of finding the fittest phenotype increases dramatically with its abundance in genotype space. This phenotypic bias represents a mechanism that can prevent the fixation in the population of the fittest phenotype, one that is inherent to the structure of genotype space and the genotype-phenotype map.
Collapse
Affiliation(s)
- Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- UC3M-Santander Big Data Institute (IBiDat), Universidad Carlos III de Madrid, Getafe, Madrid, Spain
| |
Collapse
|
19
|
Weiß M, Ahnert SE. Using small samples to estimate neutral component size and robustness in the genotype-phenotype map of RNA secondary structure. J R Soc Interface 2020; 17:20190784. [PMID: 32429824 DOI: 10.1098/rsif.2019.0784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In genotype-phenotype (GP) maps, the genotypes that map to the same phenotype are usually not randomly distributed across the space of genotypes, but instead are predominantly connected through one-point mutations, forming network components that are commonly referred to as neutral components (NCs). Because of their impact on evolutionary processes, the characteristics of these NCs, like their size or robustness, have been studied extensively. Here, we introduce a framework that allows the estimation of NC size and robustness in the GP map of RNA secondary structure. The advantage of this framework is that it only requires small samples of genotypes and their local environment, which also allows experimental realizations. We verify our framework by applying it to the exhaustively analysable GP map of RNA sequence length L = 15, and benchmark it against an existing method by applying it to longer, naturally occurring functional non-coding RNA sequences. Although it is specific to the RNA secondary structure GP map in the first place, our framework can probably be transferred and adapted to other sequence-to-structure GP maps.
Collapse
Affiliation(s)
- Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sebastian E Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
20
|
Dingle K, Pérez GV, Louis AA. Generic predictions of output probability based on complexities of inputs and outputs. Sci Rep 2020; 10:4415. [PMID: 32157160 PMCID: PMC7064605 DOI: 10.1038/s41598-020-61135-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2022] Open
Abstract
For a broad class of input-output maps, arguments based on the coding theorem from algorithmic information theory (AIT) predict that simple (low Kolmogorov complexity) outputs are exponentially more likely to occur upon uniform random sampling of inputs than complex outputs are. Here, we derive probability bounds that are based on the complexities of the inputs as well as the outputs, rather than just on the complexities of the outputs. The more that outputs deviate from the coding theorem bound, the lower the complexity of their inputs. Since the number of low complexity inputs is limited, this behaviour leads to an effective lower bound on the probability. Our new bounds are tested for an RNA sequence to structure map, a finite state transducer and a perceptron. The success of these new methods opens avenues for AIT to be more widely used.
Collapse
Affiliation(s)
- Kamaludin Dingle
- Centre for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, 32093, Kuwait.,Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Guillermo Valle Pérez
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
| |
Collapse
|
21
|
Oliver CG, Reinharz V, Waldispühl J. On the emergence of structural complexity in RNA replicators. RNA (NEW YORK, N.Y.) 2019; 25:1579-1591. [PMID: 31467146 PMCID: PMC6859851 DOI: 10.1261/rna.070391.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The RNA world hypothesis relies on the ability of ribonucleic acids to spontaneously acquire complex structures capable of supporting essential biological functions. Multiple sophisticated evolutionary models have been proposed for their emergence, but they often assume specific conditions. In this work, we explore a simple and parsimonious scenario describing the emergence of complex molecular structures at the early stages of life. We show that at specific GC content regimes, an undirected replication model is sufficient to explain the apparition of multibranched RNA secondary structures-a structural signature of many essential ribozymes. We ran a large-scale computational study to map energetically stable structures on complete mutational networks of 50-nt-long RNA sequences. Our results reveal that the sequence landscape with stable structures is enriched with multibranched structures at a length scale coinciding with the appearance of complex structures in RNA databases. A random replication mechanism preserving a 50% GC content may suffice to explain a natural enrichment of stable complex structures in populations of functional RNAs. In contrast, an evolutionary mechanism eliciting the most stable folds at each generation appears to help reaching multibranched structures at highest GC content.
Collapse
Affiliation(s)
- Carlos G Oliver
- School of Computer Science, McGill University, Montreal, QC H3A 2B3, Canada
| | - Vladimir Reinharz
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 34126, South Korea
| | - Jérôme Waldispühl
- School of Computer Science, McGill University, Montreal, QC H3A 2B3, Canada
| |
Collapse
|
22
|
Nichol D, Robertson-Tessi M, Anderson ARA, Jeavons P. Model genotype-phenotype mappings and the algorithmic structure of evolution. J R Soc Interface 2019; 16:20190332. [PMID: 31690233 PMCID: PMC6893500 DOI: 10.1098/rsif.2019.0332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancers are complex dynamic systems that undergo evolution and selection. Personalized medicine approaches in the clinic increasingly rely on predictions of tumour response to one or more therapies; these predictions are complicated by the inevitable evolution of the tumour. Despite enormous amounts of data on the mutational status of cancers and numerous therapies developed in recent decades to target these mutations, many of these treatments fail after a time due to the development of resistance in the tumour. The emergence of these resistant phenotypes is not easily predicted from genomic data, since the relationship between genotypes and phenotypes, termed the genotype-phenotype (GP) mapping, is neither injective nor functional. We present a review of models of this mapping within a generalized evolutionary framework that takes into account the relation between genotype, phenotype, environment and fitness. Different modelling approaches are described and compared, and many evolutionary results are shown to be conserved across studies despite using different underlying model systems. In addition, several areas for future work that remain understudied are identified, including plasticity and bet-hedging. The GP-mapping provides a pathway for understanding the potential routes of evolution taken by cancers, which will be necessary knowledge for improving personalized therapies.
Collapse
Affiliation(s)
- Daniel Nichol
- Department of Computer Science, University of Oxford, Oxford, UK
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander R. A. Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Jeavons
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Grabow WW, Andrews GE. On the nature and origin of biological information: The curious case of RNA. Biosystems 2019; 185:104031. [PMID: 31525398 DOI: 10.1016/j.biosystems.2019.104031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022]
Abstract
Biological information is most commonly thought of in terms of biology's Central Dogma where DNA is viewed as a linearized code used to synthesize proteins. Using DNA's chemical cousin, RNA, as a case study we consider how biological information operates outside the linear arrangement of its polymeric subunits. Much like individual pieces of a jigsaw puzzle, particular structures enable biomolecules to undergo precise molecular interactions with one another based on their respective shapes. By exploring the relationship between sequence and structure in RNA we argue that biological information finds its ultimate functional fulfillment in the three-dimensional structural arrangement of its atoms. We show how recurrent structural RNA motifs-operating at the tertiary level of a molecule-provide robust building blocks for the formation of new structural configurations and thereby convey the information required for emergent biological functions. We posit that these same RNA structures, guided by their respective thermodynamic stabilities, experience selective pressure to maintain particular three-dimensional architectures over and above pressures to maintain a particular sequence of nucleotides. Ultimately, this framework for understanding the nature of biological information provides a useful paradigm for understanding its origins and how biological information can result from chaotic prebiotic conditions.
Collapse
Affiliation(s)
- Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA, 918119-1997, USA.
| | - Grace E Andrews
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA, 918119-1997, USA
| |
Collapse
|
24
|
Weiß M, Ahnert SE. Phenotypes can be robust and evolvable if mutations have non-local effects on sequence constraints. J R Soc Interface 2019; 15:rsif.2017.0618. [PMID: 29321270 DOI: 10.1098/rsif.2017.0618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
The mapping between biological genotypes and phenotypes plays an important role in evolution, and understanding the properties of this mapping is crucial to determine the outcome of evolutionary processes. One of the most striking properties observed in several genotype-phenotype (GP) maps is the positive correlation between the robustness and evolvability of phenotypes. This implies that a phenotype can be strongly robust against mutations and at the same time evolvable to a diverse range of alternative phenotypes. Here, we examine the causes for this positive correlation by introducing two analytically tractable GP map models that follow the principles of real biological GP maps. The first model is based on gene-like GP maps, reflecting the way in which genetic sequences are organized into protein-coding genes, and the second one is based on the GP map of RNA secondary structure. For both models, we find that a positive correlation between phenotype robustness and evolvability only emerges if mutations at one sequence position can have non-local effects on the sequence constraints at another position. This highlights that non-local effects of mutations are closely related to the coexistence of robustness and evolvability in phenotypes, and are likely to be an important feature of many biological GP maps.
Collapse
Affiliation(s)
- Marcel Weiß
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK .,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sebastian E Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
25
|
Catalán P, Wagner A, Manrubia S, Cuesta JA. Adding levels of complexity enhances robustness and evolvability in a multilevel genotype-phenotype map. J R Soc Interface 2019; 15:rsif.2017.0516. [PMID: 29321269 DOI: 10.1098/rsif.2017.0516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/01/2017] [Indexed: 01/24/2023] Open
Abstract
Robustness and evolvability are the main properties that account for the stability and accessibility of phenotypes. They have been studied in a number of computational genotype-phenotype maps. In this paper, we study a metabolic genotype-phenotype map defined in toyLIFE, a multilevel computational model that represents a simplified cellular biology. toyLIFE includes several levels of phenotypic expression, from proteins to regulatory networks to metabolism. Our results show that toyLIFE shares many similarities with other seemingly unrelated computational genotype-phenotype maps. Thus, toyLIFE shows a high degeneracy in the mapping from genotypes to phenotypes, as well as a highly skewed distribution of phenotypic abundances. The neutral networks associated with abundant phenotypes are highly navigable, and common phenotypes are close to each other in genotype space. All of these properties are remarkable, as toyLIFE is built on a version of the HP protein-folding model that is neither robust nor evolvable: phenotypes cannot be mutually accessed through point mutations. In addition, both robustness and evolvability increase with the number of genes in a genotype. Therefore, our results suggest that adding levels of complexity to the mapping of genotypes to phenotypes and increasing genome size enhances both these properties.
Collapse
Affiliation(s)
- Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain .,Departamento de Matematicas, Universidad Carlos III de Madrid, Madrid, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Santa Fe Institute, Santa Fe, NM, USA.,Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Programa de Biología de Sistemas, Centro Nacional de Biotecnologia, Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Departamento de Matematicas, Universidad Carlos III de Madrid, Madrid, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid, UC3M-BS, Madrid, Spain
| |
Collapse
|
26
|
Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses 2019; 11:v11050425. [PMID: 31075860 PMCID: PMC6563258 DOI: 10.3390/v11050425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative approaches, we evaluated the likelihood that RNA sequences fold into a rod-like structure and bear specific sequence motifs facilitating interactions with other molecules, e.g., RNA polymerases, RNases, and ligases. By means of numerical simulations, we show that circular RNA replicons analogous to Pospiviroidae emerge if evolution is seeded with minimal circular RNAs that grow through the gradual addition of nucleotides. Further, these rod-like replicons often maintain their structure if independent functional modules are acquired that impose selective constraints. The evolutionary scenario we propose here is consistent with the structural and biochemical properties of viroids described to date.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, 46980 València, Spain.
- The Santa Fe Institute, Santa Fe, NM 87501, USA.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid⁻Banco de Santander, 28903 Getafe, Spain.
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- National Biotechnology Centre (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
27
|
Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. Evolution in the light of fitness landscape theory. Trends Ecol Evol 2019; 34:69-82. [DOI: 10.1016/j.tree.2018.10.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/28/2023]
|
28
|
Rezazadegan R, Reidys C. Degeneracy and genetic assimilation in RNA evolution. BMC Bioinformatics 2018; 19:543. [PMID: 30587112 PMCID: PMC6307299 DOI: 10.1186/s12859-018-2497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The neutral theory of Motoo Kimura stipulates that evolution is mostly driven by neutral mutations. However adaptive pressure eventually leads to changes in phenotype that involve non-neutral mutations. The relation between neutrality and adaptation has been studied in the context of RNA before and here we further study transitional mutations in the context of degenerate (plastic) RNA sequences and genetic assimilation. We propose quasineutral mutations, i.e. mutations which preserve an element of the phenotype set, as minimal mutations and study their properties. We also propose a general probabilistic interpretation of genetic assimilation and specialize it to the Boltzmann ensemble of RNA sequences. RESULTS We show that degenerate sequences i.e. sequences with more than one structure at the MFE level have the highest evolvability among all sequences and are central to evolutionary innovation. Degenerate sequences also tend to cluster together in the sequence space. The selective pressure in an evolutionary simulation causes the population to move towards regions with more degenerate sequences, i.e. regions at the intersection of different neutral networks, and this causes the number of such sequences to increase well beyond the average percentage of degenerate sequences in the sequence space. We also observe that evolution by quasineutral mutations tends to conserve the number of base pairs in structures and thereby maintains structural integrity even in the presence of pressure to the contrary. CONCLUSIONS We conclude that degenerate RNA sequences play a major role in evolutionary adaptation.
Collapse
Affiliation(s)
- Reza Rezazadegan
- University of Virginia Biocomplexity Institute, 995 Research Park Boulevard, Charlottesville, 22911 USA
| | - Christian Reidys
- University of Virginia Biocomplexity Institute, 995 Research Park Boulevard, Charlottesville, 22911 USA
- Department of Mathematics, University of Virginia, 141 Cabell Drive, Charlottesville, 22904 USA
| |
Collapse
|
29
|
Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018; 209:949-966. [PMID: 30049818 DOI: 10.1534/genetics.118.300995] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Phenotypic variation is generated by the processes of development, with some variants arising more readily than others-a phenomenon known as "developmental bias." Developmental bias and natural selection have often been portrayed as alternative explanations, but this is a false dichotomy: developmental bias can evolve through natural selection, and bias and selection jointly influence phenotypic evolution. Here, we briefly review the evidence for developmental bias and illustrate how it is studied empirically. We describe recent theory on regulatory networks that explains why the influence of genetic and environmental perturbation on phenotypes is typically not uniform, and may even be biased toward adaptive phenotypic variation. We show how bias produced by developmental processes constitutes an evolving property able to impose direction on adaptive evolution and influence patterns of taxonomic and phenotypic diversity. Taking these considerations together, we argue that it is not sufficient to accommodate developmental bias into evolutionary theory merely as a constraint on evolutionary adaptation. The influence of natural selection in shaping developmental bias, and conversely, the influence of developmental bias in shaping subsequent opportunities for adaptation, requires mechanistic models of development to be expanded and incorporated into evolutionary theory. A regulatory network perspective on phenotypic evolution thus helps to integrate the generation of phenotypic variation with natural selection, leaving evolutionary biology better placed to explain how organisms adapt and diversify.
Collapse
|
30
|
Aguirre J, Catalán P, Cuesta JA, Manrubia S. On the networked architecture of genotype spaces and its critical effects on molecular evolution. Open Biol 2018; 8:180069. [PMID: 29973397 PMCID: PMC6070719 DOI: 10.1098/rsob.180069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Evolutionary dynamics is often viewed as a subtle process of change accumulation that causes a divergence among organisms and their genomes. However, this interpretation is an inheritance of a gradualistic view that has been challenged at the macroevolutionary, ecological and molecular level. Actually, when the complex architecture of genotype spaces is taken into account, the evolutionary dynamics of molecular populations becomes intrinsically non-uniform, sharing deep qualitative and quantitative similarities with slowly driven physical systems: nonlinear responses analogous to critical transitions, sudden state changes or hysteresis, among others. Furthermore, the phenotypic plasticity inherent to genotypes transforms classical fitness landscapes into multiscapes where adaptation in response to an environmental change may be very fast. The quantitative nature of adaptive molecular processes is deeply dependent on a network-of-networks multilayered structure of the map from genotype to function that we begin to unveil.
Collapse
Affiliation(s)
- Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- UC3M-BS Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid, Getafe, Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
31
|
Ahnert SE. Structural properties of genotype-phenotype maps. J R Soc Interface 2018; 14:rsif.2017.0275. [PMID: 28679667 DOI: 10.1098/rsif.2017.0275] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
The map between genotype and phenotype is fundamental to biology. Biological information is stored and passed on in the form of genotypes, and expressed in the form of phenotypes. A growing body of literature has examined a wide range of genotype-phenotype (GP) maps and has established a number of properties that appear to be shared by many GP maps. These properties are 'structural' in the sense that they are properties of the distribution of phenotypes across the point-mutation network of genotypes. They include: a redundancy of genotypes, meaning that many genotypes map to the same phenotypes, a highly non-uniform distribution of the number of genotypes per phenotype, a high robustness of phenotypes and the ability to reach a large number of new phenotypes within a small number of mutational steps. A further important property is that the robustness and evolvability of phenotypes are positively correlated. In this review, I give an overview of the study of GP maps with particular emphasis on these structural properties, and discuss a model that attempts to explain why these properties arise, as well as some of the fundamental ways in which the structure of GP maps can affect evolutionary outcomes.
Collapse
Affiliation(s)
- S E Ahnert
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK .,Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
32
|
Dingle K, Camargo CQ, Louis AA. Input-output maps are strongly biased towards simple outputs. Nat Commun 2018; 9:761. [PMID: 29472533 PMCID: PMC5823903 DOI: 10.1038/s41467-018-03101-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Many systems in nature can be described using discrete input–output maps. Without knowing details about a map, there may seem to be no a priori reason to expect that a randomly chosen input would be more likely to generate one output over another. Here, by extending fundamental results from algorithmic information theory, we show instead that for many real-world maps, the a priori probability P(x) that randomly sampled inputs generate a particular output x decays exponentially with the approximate Kolmogorov complexity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tilde K(x)$$\end{document}K~(x) of that output. These input–output maps are biased towards simplicity. We derive an upper bound P(x) ≲ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{ - a\tilde K(x) - b}$$\end{document}2-aK~(x)-b, which is tight for most inputs. The constants a and b, as well as many properties of P(x), can be predicted with minimal knowledge of the map. We explore this strong bias towards simple outputs in systems ranging from the folding of RNA secondary structures to systems of coupled ordinary differential equations to a stochastic financial trading model. Algorithmic information theory measures the complexity of strings. Here the authors provide a practical bound on the probability that a randomly generated computer program produces a given output of a given complexity and apply this upper bound to RNA folding and financial trading algorithms.
Collapse
Affiliation(s)
- Kamaludin Dingle
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK. .,Systems Biology DTC, University of Oxford, Oxford, OX1 3QU, UK. .,International Centre for Applied Mathematics and Computational Bioengineering, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Mubarak Al-Abdullah, Kuwait.
| | - Chico Q Camargo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK.,Systems Biology DTC, University of Oxford, Oxford, OX1 3QU, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK.
| |
Collapse
|
33
|
Manrubia S, Cuesta JA. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps. J R Soc Interface 2017; 14:rsif.2016.0976. [PMID: 28424303 DOI: 10.1098/rsif.2016.0976] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain .,Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,UC3M-BS Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid, Getafe, Madrid, Spain
| |
Collapse
|
34
|
Catalán P, Arias CF, Cuesta JA, Manrubia S. Adaptive multiscapes: an up-to-date metaphor to visualize molecular adaptation. Biol Direct 2017; 12:7. [PMID: 28245845 PMCID: PMC5331743 DOI: 10.1186/s13062-017-0178-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background Wright’s metaphor of the fitness landscape has shaped and conditioned our view of the adaptation of populations for almost a century. Since its inception, and including criticism raised by Wright himself, the concept has been surrounded by controversy. Among others, the debate stems from the intrinsic difficulty to capture important features of the space of genotypes, such as its high dimensionality or the existence of abundant ridges, in a visually appealing two-dimensional picture. Two additional currently widespread observations come to further constrain the applicability of the original metaphor: the very skewed distribution of phenotype sizes (which may actively prevent, due to entropic effects, the achievement of fitness maxima), and functional promiscuity (i.e. the existence of secondary functions which entail partial adaptation to environments never encountered before by the population). Results Here we revise some of the shortcomings of the fitness landscape metaphor and propose a new “scape” formed by interconnected layers, each layer containing the phenotypes viable in a given environment. Different phenotypes within a layer are accessible through mutations with selective value, while neutral mutations cause displacements of populations within a phenotype. A different environment is represented as a separated layer, where phenotypes may have new fitness values, other phenotypes may be viable, and the same genotype may yield a different phenotype, representing genotypic promiscuity. This scenario explicitly includes the many-to-many structure of the genotype-to-phenotype map. A number of empirical observations regarding the adaptation of populations in the light of adaptive multiscapes are reviewed. Conclusions Several shortcomings of Wright’s visualization of fitness landscapes can be overcome through adaptive multiscapes. Relevant aspects of population adaptation, such as neutral drift, functional promiscuity or environment-dependent fitness, as well as entropic trapping and the concomitant impossibility to reach fitness peaks are visualized at once. Adaptive multiscapes should aid in the qualitative understanding of the multiple pathways involved in evolutionary dynamics. Reviewers This article was reviewed by Eugene Koonin and Ricard Solé.
Collapse
Affiliation(s)
- Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Departamento de Matemáticas, Universidad Carlos III de Madrid, Madrid, Spain
| | - Clemente F Arias
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Jose A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.,Departamento de Matemáticas, Universidad Carlos III de Madrid, Madrid, Spain.,Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain.,UC3M-BS Institute of Financial Big Data (IFiBiD), Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain. .,National Biotechnology Centre (CSIC), c/ Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|
35
|
Louis AA. Contingency, convergence and hyper-astronomical numbers in biological evolution. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 58:107-116. [PMID: 26868415 DOI: 10.1016/j.shpsc.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces.
Collapse
Affiliation(s)
- Ard A Louis
- Rudolph Peierls Centre for Theoretical Physics, Univeristy of Oxford, 1 Keble Road, Ox1 3NP, United Kingdom.
| |
Collapse
|
36
|
Greenbury SF, Schaper S, Ahnert SE, Louis AA. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability. PLoS Comput Biol 2016; 12:e1004773. [PMID: 26937652 PMCID: PMC4777517 DOI: 10.1371/journal.pcbi.1004773] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/24/2016] [Indexed: 11/18/2022] Open
Abstract
Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps-a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure-to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so increase evolvability.
Collapse
Affiliation(s)
- Sam F. Greenbury
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Steffen Schaper
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Sebastian E. Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ard A. Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Conway Morris S, Hoyal Cuthill JF, Gerber S. Hunting Darwin's Snark: which maps shall we use? Interface Focus 2015. [DOI: 10.1098/rsfs.2015.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 11 contributions to this thematic volume touch on a large range of issues concerning the landscape of biological possibilities and the manner by which it may be traversed by evolving life forms. The contributors also consider how this landscape might be mapped by evolutionary biologists, with an emphasis on how one might identify the limits of such maps. While some agreements emerge on the question of limits on evolution, not surprisingly few contributors look towards the same horizons. Rather than providing a potted summary of the 11 papers, our aim in this introduction is to identify eight principal themes that might serve as common ground and, as importantly, to listen out for the sound of rushing subterranean waters that hint at caverns of concealed knowledge. By no means all of these themes are addressed by all authors, but in gathering the many strands of enquiry we hope that this will allow us to ask: What, if any, are the limits to evolution?
Collapse
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | | | - Sylvain Gerber
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- National Museum of Natural History, Paris, France
| |
Collapse
|