1
|
Srimasorn S, Souter L, Green DE, Djerbal L, Goodenough A, Duncan JA, Roberts ARE, Zhang X, Débarre D, DeAngelis PL, Kwok JCF, Richter RP. A quartz crystal microbalance method to quantify the size of hyaluronan and other glycosaminoglycans on surfaces. Sci Rep 2022; 12:10980. [PMID: 35768463 PMCID: PMC9243130 DOI: 10.1038/s41598-022-14948-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Hyaluronan (HA) is a major component of peri- and extra-cellular matrices and plays important roles in many biological processes such as cell adhesion, proliferation and migration. The abundance, size distribution and presentation of HA dictate its biological effects and are also useful indicators of pathologies and disease progression. Methods to assess the molecular mass of free-floating HA and other glycosaminoglycans (GAGs) are well established. In many biological and technological settings, however, GAGs are displayed on surfaces, and methods to obtain the size of surface-attached GAGs are lacking. Here, we present a method to size HA that is end-attached to surfaces. The method is based on the quartz crystal microbalance with dissipation monitoring (QCM-D) and exploits that the softness and thickness of films of grafted HA increase with HA size. These two quantities are sensitively reflected by the ratio of the dissipation shift (ΔD) and the negative frequency shift (- Δf) measured by QCM-D upon the formation of HA films. Using a series of size-defined HA preparations, ranging in size from ~ 2 kDa tetrasaccharides to ~ 1 MDa polysaccharides, we establish a monotonic yet non-linear standard curve of the ΔD/ - Δf ratio as a function of HA size, which reflects the distinct conformations adopted by grafted HA chains depending on their size and surface coverage. We demonstrate that the standard curve can be used to determine the mean size of HA, as well as other GAGs, such as chondroitin sulfate and heparan sulfate, of preparations of previously unknown size in the range from 1 to 500 kDa, with a resolution of better than 10%. For polydisperse samples, our analysis shows that the process of surface-grafting preferentially selects smaller GAG chains, and thus reduces the average size of GAGs that are immobilised on surfaces comparative to the original solution sample. Our results establish a quantitative method to size HA and other GAGs grafted on surfaces, and also highlight the importance of sizing GAGs directly on surfaces. The method should be useful for the development and quality control of GAG-based surface coatings in a wide range of research areas, from molecular interaction analysis to biomaterials coatings.
Collapse
Affiliation(s)
- Sumitra Srimasorn
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Luke Souter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Lynda Djerbal
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ashleigh Goodenough
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - James A Duncan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Abigail R E Roberts
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaoli Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73126, USA
| | - Jessica C F Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Kolaříková A, Kutálková E, Buš V, Witasek R, Hrnčiřík J, Ingr M. Salt-dependent intermolecular interactions of hyaluronan molecules mediate the formation of temporary duplex structures. Carbohydr Polym 2022; 286:119288. [DOI: 10.1016/j.carbpol.2022.119288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/02/2022]
|
3
|
Moll CJ, Giubertoni G, van Buren L, Versluis J, Koenderink GH, Bakker HJ. Molecular Structure and Surface Accumulation Dynamics of Hyaluronan at the Water-Air Interface. Macromolecules 2021; 54:8655-8663. [PMID: 34602653 PMCID: PMC8482758 DOI: 10.1021/acs.macromol.1c00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/30/2022]
Abstract
![]()
Hyaluronan is a biopolymer
that is essential for many biological
processes in the human body, like the regulation of tissue lubrication
and inflammatory responses. Here, we study the behavior of hyaluronan
at aqueous surfaces using heterodyne-detected vibrational sum-frequency
generation spectroscopy (HD-VSFG). Low-molecular-weight hyaluronan
(∼150 kDa) gradually covers the water–air interface
within hours, leading to a negatively charged surface and a reorientation
of interfacial water molecules. The rate of surface accumulation strongly
increases when the bulk concentration of low-molecular-weight hyaluronan
is increased. In contrast, high-molecular-weight hyaluronan (>1
MDa)
cannot be detected at the surface, even hours after the addition of
the polymer to the aqueous solution. The strong dependence on the
polymer molecular weight can be explained by entanglements of the
hyaluronan polymers. We also find that for low-molecular-weight hyaluronan
the migration kinetics of hyaluronan in aqueous media shows an anomalous
dependence on the pH of the solution, which can be explained from
the interplay of hydrogen bonding and electrostatic interactions of
hyaluronan polymers.
Collapse
Affiliation(s)
- Carolyn J Moll
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Giulia Giubertoni
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lennard van Buren
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan Versluis
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Gijsje H Koenderink
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Huib J Bakker
- Amolf, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pang X, Li W, Chang L, Gautrot JE, Wang W, Azevedo HS. Hyaluronan (HA) Immobilized on Surfaces via Self-Assembled Monolayers of HA-Binding Peptide Modulates Endothelial Cell Spreading and Migration through Focal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25792-25804. [PMID: 34037376 DOI: 10.1021/acsami.1c05574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) modulates a multitude of cell functions, and this regulation is provided by key ECM components forming a complex network. Hyaluronic acid (HA) is an abundant component of the ECM that binds to proteins and influences various activities of endothelial cells (ECs). Although the effect of soluble HA on cell spreading has been studied, the impact of peptide-bound HA has not yet been investigated in great detail. We aim to comprehensively study the roles of immobilized HA on the regulation of EC behavior compared to the more conventional use of soluble HA. A 2D model surface formed by self-assembled monolayers (SAMs) of a HA-binding peptide (Pep-1) is used as an anchor for HA immobilization. Mixed SAMs, consisting of thiolated Pep-1 and 1-octanethiol, are prepared and characterized by using ellipsometry and contact angle measurement. Full density Pep-1 SAMs are more hydrophilic and bind more HA than mixed SAMs. Cell spreading and migration are enhanced by immobilized low molecular weight (LMW) HA, which also facilitates cell alignment and elongation under laminar flow conditions and potentially drives directional migration. This effect is not mediated by the expression of CD44, and immobilized LMW HA is found to accelerate the assembly of focal adhesions. Such biomimetic surfaces provide new insights into the role of HA in regulating the spreading and phenotype of endothelial cells.
Collapse
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Weiqi Li
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Lan Chang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Wen Wang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
5
|
Giubertoni G, Pérez de Alba Ortíz A, Bano F, Zhang X, Linhardt RJ, Green DE, DeAngelis PL, Koenderink GH, Richter RP, Ensing B, Bakker HJ. Strong Reduction of the Chain Rigidity of Hyaluronan by Selective Binding of Ca 2+ Ions. Macromolecules 2021; 54:1137-1146. [PMID: 33583956 PMCID: PMC7879427 DOI: 10.1021/acs.macromol.0c02242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Indexed: 01/09/2023]
Abstract
The biological functions of natural polyelectrolytes are strongly influenced by the presence of ions, which bind to the polymer chains and thereby modify their properties. Although the biological impact of such modifications is well recognized, a detailed molecular picture of the binding process and of the mechanisms that drive the subsequent structural changes in the polymer is lacking. Here, we study the molecular mechanism of the condensation of calcium, a divalent cation, on hyaluronan, a ubiquitous polymer in human tissues. By combining two-dimensional infrared spectroscopy experiments with molecular dynamics simulations, we find that calcium specifically binds to hyaluronan at millimolar concentrations. Because of its large size and charge, the calcium cation can bind simultaneously to the negatively charged carboxylate group and the amide group of adjacent saccharide units. Molecular dynamics simulations and single-chain force spectroscopy measurements provide evidence that the binding of the calcium ions weakens the intramolecular hydrogen-bond network of hyaluronan, increasing the flexibility of the polymer chain. We also observe that the binding of calcium to hyaluronan saturates at a maximum binding fraction of ∼10-15 mol %. This saturation indicates that the binding of Ca2+ strongly reduces the probability of subsequent binding of Ca2+ at neighboring binding sites, possibly as a result of enhanced conformational fluctuations and/or electrostatic repulsion effects. Our findings provide a detailed molecular picture of ion condensation and reveal the severe effect of a few, selective and localized electrostatic interactions on the rigidity of a polyelectrolyte chain.
Collapse
Affiliation(s)
| | - Alberto Pérez de Alba Ortíz
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Fouzia Bano
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre of Structural Molecular Biology, and Bragg Centre for
Materials Research, University of Leeds, LS2 9JT Leeds, U.K.
| | - Xing Zhang
- Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, 12180 New York, United States
| | - Robert J. Linhardt
- Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, 12180 New York, United States
| | - Dixy E. Green
- Department
of Biochemistry and Molecular Biology, University
of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, 73104 Oklahoma, United States
| | - Paul L. DeAngelis
- Department
of Biochemistry and Molecular Biology, University
of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, 73104 Oklahoma, United States
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ralf P. Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre of Structural Molecular Biology, and Bragg Centre for
Materials Research, University of Leeds, LS2 9JT Leeds, U.K.
| | - Bernd Ensing
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
6
|
Hernández-Meza JM, Vélez-Cordero J, Yáñez-Soto B, Ramírez-Saito A, Aranda-Espinoza S, Arauz-Lara J. Interaction of colloidal particles with biologically relevant complex surfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Innes-Gold SN, Pincus PA, Stevens MJ, Saleh OA. Polyelectrolyte Conformation Controlled by a Trivalent-Rich Ion Jacket. PHYSICAL REVIEW LETTERS 2019; 123:187801. [PMID: 31763890 DOI: 10.1103/physrevlett.123.187801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Indexed: 06/10/2023]
Abstract
The configuration of charged polymers is heavily dependent on interactions with surrounding salt ions, typically manifesting as a sensitivity to the bulk ionic strength. Here, we use single-molecule mechanical measurements to show that a charged polysaccharide, hyaluronic acid, shows a surprising regime of insensitivity to ionic strength in the presence of trivalent ions. Using simulations and theory, we propose that this is caused by the formation of a "jacket" of ions, tightly associated with the polymer, whose charge (and thus effect on configuration) is robust against changes in solution composition.
Collapse
Affiliation(s)
- Sarah N Innes-Gold
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Philip A Pincus
- Materials Department and Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185-1315, USA
| | - Omar A Saleh
- Materials Department and BMSE program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Moreno-Guerra JA, Romero-Sánchez IC, Martinez-Borquez A, Tassieri M, Stiakakis E, Laurati M. Model-Free Rheo-AFM Probes the Viscoelasticity of Tunable DNA Soft Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904136. [PMID: 31460707 DOI: 10.1002/smll.201904136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Atomic force microscopy rheological measurements (Rheo-AFM) of the linear viscoelastic properties of single, charged colloids having a star-like architecture with a hard core and an extended, deformable double-stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model-free Fourier transform method that allows a direct evaluation of the frequency-dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force-relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt-free solution. This can be correlated to significant topological changes of the dense star-like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona.
Collapse
Affiliation(s)
- José A Moreno-Guerra
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Ivany C Romero-Sánchez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Alejandro Martinez-Borquez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Emmanuel Stiakakis
- Forschungszentrum Jülich, Institute of Complex Systems 3, Leo-Brandt-Strasse, 52425, Jülich, Germany
| | - Marco Laurati
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| |
Collapse
|
9
|
Abstract
Re-engineering carbohydrates and carbohydrate-binding proteins for novel applications was the topic of a Royal Society Theo Murphy meeting at the Kavli Royal Society Centre, Chichelely Hall in Buckinghamshire, UK, 8–9 October 2018.
Collapse
Affiliation(s)
- W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|