1
|
Chaimovich M, Chaimovich A. Relative Resolution: An Analysis with the Kullback-Leibler Entropy. J Chem Theory Comput 2024; 20:2074-2087. [PMID: 38416535 DOI: 10.1021/acs.jctc.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel type of a multiscale approach, called Relative Resolution (RelRes), can correctly retrieve the behavior of various nonpolar liquids while speeding up molecular simulations by almost an order of magnitude. In this approach in a single system, molecules switch their resolution in terms of their relative separation, with near neighbors interacting via fine-grained potentials, yet far neighbors interacting via coarse-grained potentials; notably, these two potentials are analytically parametrized by a multipole approximation. Our current work focuses on analyzing RelRes by relating it with the Kullback-Leibler (KL) entropy, which is a useful metric for multiscale errors. In particular, we thoroughly examine the exact and approximate versions of this informatic measure for several alkane systems. By analyzing its dependency on the system size, we devise a formula for predicting the exact KL entropy of an "infinite" system via the computation of the approximate KL entropy of an "infinitesimal" system. Demonstrating that the KL entropy can holistically capture many multiscale errors, we settle bounds for the KL entropy that ensure a sufficient representation of the structural and thermal behavior by the RelRes algorithm. This, in turn, allows the scientific community to readily determine the ideal switching distance for an arbitrary RelRes system.
Collapse
Affiliation(s)
- Mark Chaimovich
- Russian School of Mathematics, North Bethesda, Maryland 20852, United States
| | - Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Garay PG, Machado MR, Verli H, Pantano S. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation. J Chem Theory Comput 2024; 20:963-976. [PMID: 38175797 DOI: 10.1021/acs.jctc.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Glycans constitute one of the most complex families of biological molecules. Despite their crucial role in a plethora of biological processes, they remain largely uncharacterized because of their high complexity. Their intrinsic flexibility and the vast variability associated with the many combination possibilities have hampered their experimental determination. Although theoretical methods have proven to be a valid alternative to the study of glycans, the large size associated with polysaccharides, proteoglycans, and glycolipids poses significant challenges to a fully atomistic description of biologically relevant glycoconjugates. On the other hand, the exquisite dependence on hydrogen bonds to determine glycans' structure makes the development of simplified or coarse-grained (CG) representations extremely challenging. This is particularly the case when glycan representations are expected to be compatible with CG force fields that include several molecular types. We introduce a CG representation able to simulate a wide variety of polysaccharides and common glycosylation motifs in proteins, which is fully compatible with the CG SIRAH force field. Examples of application to N-glycosylated proteins, including antibody recognition and calcium-mediated glycan-protein interactions, highlight the versatility of the enlarged set of CG molecules provided by SIRAH.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, Porto Alegre 91509-900, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Klein F, Soñora M, Helene Santos L, Nazareno Frigini E, Ballesteros-Casallas A, Rodrigo Machado M, Pantano S. The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels. J Struct Biol 2023; 215:107985. [PMID: 37331570 DOI: 10.1016/j.jsb.2023.107985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The different combinations of molecular dynamics simulations with coarse-grained representations have acquired considerable popularity among the scientific community. Especially in biocomputing, the significant speedup granted by simplified molecular models opened the possibility of increasing the diversity and complexity of macromolecular systems, providing realistic insights on large assemblies for more extended time windows. However, a holistic view of biological ensembles' structural and dynamic features requires a self-consistent force field, namely, a set of equations and parameters that describe the intra and intermolecular interactions among moieties of diverse chemical nature (i.e., nucleic and amino acids, lipids, solvent, ions, etc.). Nevertheless, examples of such force fields are scarce in the literature at the fully atomistic and coarse-grained levels. Moreover, the number of force fields capable of handling simultaneously different scales is restricted to a handful. Among those, the SIRAH force field, developed in our group, furnishes a set of topologies and tools that facilitate the setting up and running of molecular dynamics simulations at the coarse-grained and multiscale levels. SIRAH uses the same classical pairwise Hamiltonian function implemented in the most popular molecular dynamics software. In particular, it runs natively in AMBER and Gromacs engines, and porting it to other simulation packages is straightforward. This review describes the underlying philosophy behind the development of SIRAH over the years and across families of biological molecules, discussing current limitations and future implementations.
Collapse
Affiliation(s)
- Florencia Klein
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Paris, France
| | - Martín Soñora
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | | | - Ezequiel Nazareno Frigini
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Universidad Nacional de San Luis - CONICET, San Luis, Argentina
| | - Andrés Ballesteros-Casallas
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay; Area Bioinformática, DETEMA, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | | | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay; Area Bioinformática, DETEMA, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay.
| |
Collapse
|
4
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Pantano S. Back and forth modeling through biological scales. Biochem Biophys Res Commun 2022; 633:39-41. [DOI: 10.1016/j.bbrc.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
|
6
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
7
|
Yang X, Zhuang Y, Zhu J, Le J, Cheng J. Recent progress on multiscale modeling of electrochemistry. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Yong‐Bin Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Jia‐Xin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| | - Jia‐Bo Le
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen China
| |
Collapse
|
8
|
Computational methods for exploring protein conformations. Biochem Soc Trans 2021; 48:1707-1724. [PMID: 32756904 PMCID: PMC7458412 DOI: 10.1042/bst20200193] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins are dynamic molecules that can transition between a potentially wide range of structures comprising their conformational ensemble. The nature of these conformations and their relative probabilities are described by a high-dimensional free energy landscape. While computer simulation techniques such as molecular dynamics simulations allow characterisation of the metastable conformational states and the transitions between them, and thus free energy landscapes, to be characterised, the barriers between states can be high, precluding efficient sampling without substantial computational resources. Over the past decades, a dizzying array of methods have emerged for enhancing conformational sampling, and for projecting the free energy landscape onto a reduced set of dimensions that allow conformational states to be distinguished, known as collective variables (CVs), along which sampling may be directed. Here, a brief description of what biomolecular simulation entails is followed by a more detailed exposition of the nature of CVs and methods for determining these, and, lastly, an overview of the myriad different approaches for enhancing conformational sampling, most of which rely upon CVs, including new advances in both CV determination and conformational sampling due to machine learning.
Collapse
|
9
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
10
|
Chaimovich M, Chaimovich A. Relative Resolution: A Computationally Efficient Implementation in LAMMPS. J Chem Theory Comput 2021; 17:1045-1059. [PMID: 33512166 DOI: 10.1021/acs.jctc.0c01003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, a novel type of multiscale simulation, called Relative Resolution (RelRes), was introduced. In a single system, molecules switch their resolution in terms of their relative separation, with near neighbors interacting via fine-grained potentials yet far neighbors interacting via coarse-grained potentials; notably, these two potentials are analytically parametrized by a multipole approximation. This multiscale approach is consequently able to correctly retrieve across state space the structural and thermal, as well as static and dynamic, behavior of various nonpolar mixtures. Our current work focuses on the practical implementation of RelRes in LAMMPS, specifically for the commonly used Lennard-Jones potential. By examining various correlations and properties of several alkane liquids, including complex solutions of alternate cooligomers and block copolymers, we confirm the validity of this automated LAMMPS algorithm. Most importantly, we demonstrate that this RelRes implementation gains almost an order of magnitude in computational efficiency, as compared with conventional simulations. We thus recommend this novel LAMMPS algorithm for anyone studying systems governed by Lennard-Jones interactions.
Collapse
Affiliation(s)
- Mark Chaimovich
- Russian School of Mathematics, North Bethesda, Maryland 20852, United States
| | - Aviel Chaimovich
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Soñora M, Martínez L, Pantano S, Machado MR. Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J Chem Inf Model 2021; 61:408-422. [PMID: 33415985 DOI: 10.1021/acs.jcim.0c01205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simulating huge biomolecular complexes of million atoms at relevant biological time scales is becoming accessible to the broad scientific community. That proves to be crucial for urgent responses against emergent diseases in real time. Yet, there are still issues to sort regarding the system setup so that molecular dynamics (MD) simulations can be run in a simple and standard way. Here, we introduce an optimized pipeline for building and simulating enveloped virus-like particles (VLP). First, the membrane packing problem is tackled with new features and optimized options in PACKMOL. This allows preparing accurate membrane models of thousands of lipids in the context of a VLP within a few hours using a single CPU. Then, the assembly of the VLP system is done within the multiscale framework of the coarse-grained SIRAH force field. Finally, the equilibration protocol provides a system ready for production MD simulations within a few days on broadly accessible GPU resources. The pipeline is applied to study the Zika virus as a test case for large biomolecular systems. The VLP stabilizes at approximately 0.5 μs of MD simulation, reproducing correlations greater than 0.90 against experimental density maps from cryo-electron microscopy. Detailed structural analysis of the protein envelope also shows very good agreement in root-mean-square deviations and B-factors with the experimental data. The level of details attained shows for the first time a possible role for anionic phospholipids in stabilizing the envelope. Combining an efficient and reliable setup procedure with an accurate coarse-grained force field provides a valuable pipeline for simulating arbitrary viral systems or subcellular compartments, paving the way toward whole-cell simulations.
Collapse
Affiliation(s)
- Martín Soñora
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Leandro Martínez
- Institute of Chemistry and Center for Computational Engineering & Science, University of Campinas, Rua Josué de Castro s/n, Cidade Universitária "Zeferino Vaz", Barão Geraldo, 13083-861 Campinas, SP, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| |
Collapse
|
12
|
Klein F, Cáceres D, Carrasco MA, Tapia JC, Caballero J, Alzate-Morales J, Pantano S. Coarse-Grained Parameters for Divalent Cations within the SIRAH Force Field. J Chem Inf Model 2020; 60:3935-3943. [DOI: 10.1021/acs.jcim.0c00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florencia Klein
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Daniela Cáceres
- Escuela de Medicina, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingenierı́a, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Talca 3460000, Chile
| | - Mónica A. Carrasco
- Escuela de Medicina, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile
| | - Juan Carlos Tapia
- Escuela de Medicina, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingenierı́a, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Talca 3460000, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingenierı́a, Universidad de Talca, Campus Talca, 1 Poniente No. 1141, Talca 3460000, Chile
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
13
|
Garay PG, Barrera EE, Pantano S. Post-Translational Modifications at the Coarse-Grained Level with the SIRAH Force Field. J Chem Inf Model 2020; 60:964-973. [PMID: 31840995 DOI: 10.1021/acs.jcim.9b00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Post-translational modifications (PTMs) on proteins significantly enlarge the physicochemical diversity present in biological macromolecules, altering function, localization, and interactions. Despite their critical role in regulating cellular processes, theoretical methods are not yet fully capable of coping with this diversity. These limitations are particularly more marked for coarse-grained (CG) models, in which comprehensive and self-consistent parametrizations are less frequent. Here we present a set of topologies and interaction parameters for the most common PTMs, fully compatible with the SIRAH force field. The PTMs introduced here reach the same level of structural description of the existing SIRAH force field, expanding the chemical spectrum with promising applications in dynamical protein-protein interactions in large and complex cellular environments.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
14
|
Barrera EE, Machado MR, Pantano S. Fat SIRAH: Coarse-Grained Phospholipids To Explore Membrane-Protein Dynamics. J Chem Theory Comput 2019; 15:5674-5688. [PMID: 31433946 DOI: 10.1021/acs.jctc.9b00435] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capability to handle highly heterogeneous molecular assemblies in a consistent manner is among the greatest challenges faced when deriving simulation parameters. This is particularly the case for coarse-grained (CG) simulations in which chemical functional groups are lumped into effective interaction centers for which transferability between different chemical environments is not guaranteed. Here, we introduce the parametrization of a set of CG phospholipids compatible with the latest version of the SIRAH force field for proteins. The newly introduced lipid species include different acylic chain lengths and partial unsaturation, as well as polar and acidic head groups that show a very good reproduction of structural membrane determinants, such as areas per lipid, thickness, order parameter, etc., and their dependence with temperature. Simulation of membrane proteins showed unprecedented accuracy in the unbiased description of the thickness-dependent membrane-protein orientation in systems where this information is experimentally available (namely, the SarcoEndoplasmic Reticulum Calcium-SERCA-pump and its regulator Phospholamban). The interactions that lead to this faithful reproduction can be traced down to the single amino acid-lipid interaction level and show full agreement with biochemical data present in the literature. Finally, the present parametrization is implemented in the GROMACS and AMBER simulation packages facilitating its use by a wide portion of the biocomputing community.
Collapse
Affiliation(s)
- Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
15
|
Erban R, Harris S, Potestio R. Multi-resolution simulations of intracellular processes. Interface Focus 2019. [DOI: 10.1098/rsfs.2019.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This is an introduction to the Thematic Issue of
Interface Focus
containing papers by speakers of the Theo Murphy International Scientific Meeting on ‘Multi-resolution simulations of intracellular processes’
Collapse
Affiliation(s)
- Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Sarah Harris
- School of Physics and Astronomy and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Raffaello Potestio
- Physics Department, University of Trento, via Sommarive, 14 38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, 38123 Trento, Italy
| |
Collapse
|
16
|
Machado MR, Barrera EE, Klein F, Sóñora M, Silva S, Pantano S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J Chem Theory Comput 2019; 15:2719-2733. [PMID: 30810317 DOI: 10.1021/acs.jctc.9b00006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new version of the coarse-grained (CG) SIRAH force field for proteins has been developed. Modifications to bonded and non-bonded interactions on the existing molecular topologies significantly ameliorate the structural description and flexibility of a non-redundant set of proteins. The SIRAH 2.0 force field has also been ported to the popular simulation package AMBER, which along with the former implementation in GROMACS expands significantly the potential range of users and performance of this CG force field on CPU/GPU codes. As a non-trivial example of its application, we undertook the structural and dynamical analysis of the most abundant and conserved calcium-binding protein, calmodulin (CaM). CaM is composed of two calcium-binding motifs called EF-hands, which in the presence of calcium specifically recognize a cognate peptide by embracing it. CG simulations of CaM bound to four calcium ions in the presence or absence of a binding peptide (holo and apo forms, respectively) resulted in good and stable ion coordination. The simulation of the holo form starting from an experimental structure sampled near-native conformations, retrieving quasi-atomistic precision. Removing the binding peptide enabled the EF-hands to perform large reciprocal movements, comparable to those observed in NMR structures. On the other hand, the isolated peptide starting from the helical conformation experienced spontaneous unfolding, in agreement with previous experimental data. However, repositioning the peptide in the neighborhood of one EF-hand not only prevented the peptide from unfolding but also drove CaM to a fully bound conformation, with both EF-hands embracing the cognate peptide, resembling the experimental holo structure. Therefore, SIRAH 2.0 shows the capacity to handle a number of structurally and dynamically challenging situations, including metal ion coordination, unbiased conformational sampling, and specific protein-peptide recognition.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Florencia Klein
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Martín Sóñora
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Steffano Silva
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| |
Collapse
|