1
|
Vanhove MPM, Kmentová N, Faes C, Fernandes JMO, Hahn C, Hens N, Pariselle A, Koblmüller S. Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks. Cold Spring Harb Perspect Biol 2025; 17:a041450. [PMID: 38768969 PMCID: PMC11694742 DOI: 10.1101/cshperspect.a041450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Christel Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Institut de Ciències del Mar, Spanish National Research Council, 08003 Barcelona, Spain
| | - Christoph Hahn
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerpen, Belgium
| | - Antoine Pariselle
- Institute of Evolutionary Science of Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement, 34394 Montpellier, France
- Laboratory Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University in Rabat, 10000 Rabat, Morocco
| | | |
Collapse
|
2
|
Lima VH, do Nascimento Pinto SM, Barreto LP, Sarria ALF, Mascarin GM, Fernandes ÉKK, Borges LMF. Repellent activity of the non-host semiochemical (E)-2-octenal against Amblyomma sculptum and Amblyomma dubitatum ticks under field conditions. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:423-437. [PMID: 38411794 DOI: 10.1007/s10493-023-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
Amblyomma ticks pose a significant public health threat due to their potential to transmit pathogens associated with rickettsial diseases. (E)-2-octenal, a compound found in donkeys (Equus asinus), exhibits strong repellent properties against Amblyomma sculptum nymphs under laboratory conditions. This study assessed the effectiveness of the (E)-2-octenal in wearable slow-release devices for personal human protection against Amblyomma ticks under natural conditions. Slow-release devices treated with (E)-2-octenal and untreated controls were prepared and tested on two volunteers walking through a tick-infested area in Goiania, Brazil. The experiment was conducted twice daily for three series of 10 days, with each volunteer wearing two devices attached to each leg, one on the ankle and one just above the thigh. Volunteers with control and treated devices exchanged them between rounds. Also, the daily release rate of (E)-2-octenal from the slow-release devices was determined in the laboratory, increasing significantly from 0.77 ± 0.14 µg/day on the first day to 9.93 ± 1.92 µg/day on the 4th day and remaining constant until the 16th day. A total of 5409 ticks were collected from both volunteers. Treated devices resulted in recovering fewer ticks (n = 1,666; 31%) compared to untreated devices (control: n = 3,743; 69%). (E)-2-octenal effectively repelled Amblyomma spp. larvae, A. sculptum adults, and exhibited pronounced repellency against A. dubitatum nymphs and adults. These findings suggest the potential of (E)-2-octenal delivered by wearable slow-release devices as a green-based repellent. Further improvements, however, are necessary to provide better protection for humans against A. sculptum and A. dubitatum in field conditions.
Collapse
Affiliation(s)
- Valesca Henrique Lima
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Salorrane Miranda do Nascimento Pinto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Lucas Prado Barreto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | | | | | - Éverton Kort Kamp Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Lígia Miranda Ferreira Borges
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Avenida Esperança S/N, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| |
Collapse
|
3
|
Garira W, Muzhinji K. Application of the replication-transmission relativity theory in the development of multiscale models of infectious disease dynamics. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2255066. [PMID: 37708175 DOI: 10.1080/17513758.2023.2255066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Despite the existence of a powerful theoretical foundation for the development of multiscale models of infectious disease dynamics in the form of the replication-transmission relativity theory, the majority of current modelling studies focus more on single-scale modelling. The explicit aim of this study is to change the current predominantly single-scale modelling landscape in the design of planning frameworks for the control, elimination and even eradication of infectious disease systems through the exploitation of multiscale modelling methods based on the application of the replication-transmission relativity theory. We first present a structured roadmap for the development of multiscale models of infectious disease systems. The roadmap is tested on hookworm infection. The testing of the feasibility of the roadmap established a fundamental result which can be generalized to confirm that the complexity of an infectious disease system is encapsulated with a level of organization spanning a microscale and a macroscale.
Collapse
Affiliation(s)
- Winston Garira
- Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematical and Computational Sciences, University of Venda, Thohoyandou, South Africa
| | - Kizito Muzhinji
- Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematical and Computational Sciences, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
4
|
Doran JWG, Thompson RN, Yates CA, Bowness R. Mathematical methods for scaling from within-host to population-scale in infectious disease systems. Epidemics 2023; 45:100724. [PMID: 37976680 DOI: 10.1016/j.epidem.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Mathematical modellers model infectious disease dynamics at different scales. Within-host models represent the spread of pathogens inside an individual, whilst between-host models track transmission between individuals. However, pathogen dynamics at one scale affect those at another. This has led to the development of multiscale models that connect within-host and between-host dynamics. In this article, we systematically review the literature on multiscale infectious disease modelling according to PRISMA guidelines, dividing previously published models into five categories governing their methodological approaches (Garira (2017)), explaining their benefits and limitations. We provide a primer on developing multiscale models of infectious diseases.
Collapse
Affiliation(s)
- James W G Doran
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom.
| | - Robin N Thompson
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, CV4 7AL, United Kingdom; Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Christian A Yates
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Ruth Bowness
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
5
|
Usman M, Zhou H, Moon S, Zhang X, Faloutsos P, Kapadia M. A Multiscale Geospatial Dataset and an Interactive Visualization Dashboard for Computational Epidemiology and Open Scientific Research. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2023; 43:39-52. [PMID: 37022361 DOI: 10.1109/mcg.2022.3230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The coronavirus disease (COVID-19) continued to strike as a highly infectious and fast-spreading disease in 2020 and 2021. As the research community actively responded to this pandemic, we saw the release of many COVID-19-related datasets and visualization dashboards. However, existing resources are insufficient to support multiscale and multifaceted modeling or simulation, which is suggested to be important by the computational epidemiology literature. This work presents a curated multiscale geospatial dataset with an interactive visualization dashboard under the context of COVID-19. This open dataset will allow researchers to conduct numerous projects or analyses relating to COVID-19 or simply geospatial-related scientific studies. The interactive visualization platform enables users to visualize the spread of the disease at different scales (e.g., country level to individual neighborhoods), and allows users to interact with the policies enforced at these scales (e.g., the closure of borders and lockdowns) to observe their impacts on the epidemiology.
Collapse
|
6
|
Exploring the effects of pathogen infection on tick behaviour from individuals to populations. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
An Embedded Multiscale Modelling to Guide Control and Elimination of Paratuberculosis in Ruminants. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9919700. [PMID: 34868347 PMCID: PMC8642023 DOI: 10.1155/2021/9919700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host scale and the between-host scale influence each other in a reciprocal (i.e., both) way through superinfection, that is, through repeated infection before the host recovers from the initial infectious episode. This key feature is demonstrated in this study through a multiscale model of paratuberculosis in ruminants. The results of this study, through numerical analysis of the multiscale model, show that superinfection influences the dynamics of paratuberculosis only at the start of the infection, while the MAP bacteria replication continuously influences paratuberculosis dynamics throughout the infection until the host recovers from the initial infectious episode. This is largely because the replication of MAP bacteria at the within-host scale sustains the dynamics of paratuberculosis at this scale domain. We further use the embedded multiscale model developed in this study to evaluate the comparative effectiveness of paratuberculosis health interventions that influence the disease dynamics at different scales from efficacy data.
Collapse
|
8
|
Garira W. The research and development process for multiscale models of infectious disease systems. PLoS Comput Biol 2020; 16:e1007734. [PMID: 32240165 PMCID: PMC7156109 DOI: 10.1371/journal.pcbi.1007734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/14/2020] [Accepted: 02/13/2020] [Indexed: 01/26/2023] Open
Abstract
Multiscale modelling of infectious disease systems falls within the domain of complexity science—the study of complex systems. However, what should be made clear is that current progress in multiscale modelling of infectious disease dynamics is still as yet insufficient to present it as a mature sub-discipline of complexity science. In this article we present a methodology for development of multiscale models of infectious disease systems. This methodology is a set of partially ordered research and development activities that result in multiscale models of infectious disease systems built from different scientific approaches. Therefore, the conclusive result of this article is a methodology to design multiscale models of infectious diseases. Although this research and development process for multiscale models cannot be claimed to be unique and final, it constitutes a good starting point, which may be found useful as a basis for further refinement in the discourse for multiscale modelling of infectious disease dynamics. Complex systems such as infectious disease systems are inherently multilevel and multiscale systems. The study of such complex systems is called complexity science. In this article we present a methodology to design multiscale models of infectious disease systems from a complex systems perspective. Within this perspective we define complexity science as the study of the interconnected relationships of the levels and scales of organization of a complex system. We therefore, define the degree of complexity of a complex system as the number of levels and scales of organization of the complex system needed to describe it. In this work we first present a common multiscale vision of the multilevel and multiscale structure of infectious disease systems as complex systems in which the levels and scales of organization of an infectious disease system interact through different self-sustained multiscale cycles/loops (primary multiscale loops, or secondary multiscale loops, or tertiary multiscale loops) formed at different levels of organization of an infectious disease system due to ongoing reciprocal influence between the microscale and the macroscale. Guided by this multiscale vision, we propose a four-stage research and development process that result in multiscale models of infectious disease systems built from different scientific approaches.
Collapse
Affiliation(s)
- Winston Garira
- Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematics and Applied Mathematics, University of Venda, Thohoyandou, South Africa
- * E-mail: ,
| |
Collapse
|
9
|
Garabed RB, Jolles A, Garira W, Lanzas C, Gutierrez J, Rempala G. Multi-scale dynamics of infectious diseases. Interface Focus 2019. [DOI: 10.1098/rsfs.2019.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To address the challenge of multiscale dynamics of infectious diseases, the Mathematical Biosciences Institute organized a workshop at The Ohio State University to bring together scientists from a variety of disciplines to share expertise gained through looking at infectious diseases across different scales. The researchers at the workshop, held in April 2018, were specifically looking at three model systems: foot-and-mouth disease, vector-borne diseases and enteric diseases. Although every multiscale model must be necessarily derived from a multiscale system, not every multiscale system has to lead to multiscale models. These three model systems seem to have produced a variety of both multiscale and integrated single-scale mechanistic models that have developed their own strengths and particular challenges. Here, we present papers from some of the workshop participants to show the breadth of the field.
Collapse
Affiliation(s)
- Rebecca B. Garabed
- College of Veterinary Medicine–Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Anna Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Winston Garira
- Mathematics and Applied Mathematics, University of Venda, Thohoyandou, Limpopo, South Africa
| | | | - Juan Gutierrez
- Department of Mathematics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Grzegorz Rempala
- College of Public Health–Biostatistics, The Ohio State University, Columbus, OH, USA
- College of Arts and Sciences–Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|