1
|
Suki B, Herrmann J, Bates JHT. An Analytic Model of Tissue Self-Healing and Its Network Implementation: Application to Fibrosis and Aging. Front Physiol 2020; 11:583024. [PMID: 33250776 PMCID: PMC7673435 DOI: 10.3389/fphys.2020.583024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Here we present a model capable of self-healing and explore its ability to resolve pathological alterations in biological tissue. We derive a simple analytic model consisting of an agent representing a cell that exhibits anabolic or catabolic activity, and which interacts with its tissue substrate according to tissue stiffness. When perturbed, this system returns toward a stable fixed point, a process corresponding to self-healing. We implemented this agent-substrate mechanism numerically on a hexagonal elastic network representing biological tissue. Agents, representing fibroblasts, were placed on the network and allowed to migrate around while they remodeled the network elements according to their activity which was determined by the stiffnesses of network elements that each agent encountered during its random walk. Initial injury to the network was simulated by increasing the stiffness of a single central network element above baseline. This system also exhibits a fixed point represented by the uniform baseline state. During the approach to the fixed point, interactions between the agents and the network create a transient spatially extended halo of stiffer network elements around the site of initial injury, which aids in overall injury repair. Non-equilibrium constraints generated by persistent injury prohibit the network to return to baseline and results in progressive stiffening, mimicking the development of fibrosis. Additionally, reducing anabolic or catabolic rates delay self-healing, reminiscent of aging. Our model thus embodies what may be the simplest set of attributes required of a spatiotemporal self-healing system, and so may help understand altered self-healing in chronic fibrotic diseases and aging.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jason H T Bates
- Department of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
2
|
Li S, Yu C, Zhou Y. Computational design of Janus polymersomes with controllable fission from double emulsions. Phys Chem Chem Phys 2020; 22:24934-24942. [PMID: 33135025 DOI: 10.1039/d0cp04561f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janus polymer vesicles (polymersomes) with biphasic membranes have special properties and potential applications in many fields. The big barrier for the preparation of Janus polymersomes lies in the difficulty of complete lateral microphase separation of polymers along the vesicle membrane due to the limited mobility. Herein, we present a systematic simulation study to provide a new strategy for the fabrication of Janus polymersomes based on water-in-oil-in-water double emulsions. Two incompatible block copolymers of AB and AC completely separate into two hemispheres of the polymersome driven by the dewetting of double emulsions, followed by the stabilization of the Janus structure with the block copolymers BC at the interface between AB and AC hemispheres. The simulation results demonstrate the formation of Janus polymersomes in a wide range of the incompatibility between blocks B and C. In addition, the morphologies of the Janus polymersomes can be readily regulated by changing the number of copolymers BC, the ratio of AB to AC, and the dewetting rate of organic solvents. Both the Janus and patchy polymersomes can be obtained through the adjustment of the dewetting rate. Besides, by introducing stimulus-cleavable copolymers of BC, the Janus polymersomes can perform controllable fission. Further comparison with similar experiments has also demonstrated the feasibility of our strategy. We believe the present work will be useful for the fabrication of polymersomes with controlled patches in a large quantity, and the stimulus-responsive fission process will also make the polymersomes promising in some applications like controlled drug delivery and cytomimetic membrane communication.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China.
| | | | | |
Collapse
|
3
|
Rajak P, Kalia RK, Nakano A, Vashishta P. Faceting, Grain Growth, and Crack Healing in Alumina. ACS NANO 2018; 12:9005-9010. [PMID: 30074760 DOI: 10.1021/acsnano.8b02484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive molecular dynamics simulations are performed to study self-healing of cracks in Al2O3 containing core/shell SiC/SiO2 nanoparticles. These simulations are carried out in a precracked Al2O3 under mode 1 strain at 1426 °C. The nanoparticles are embedded ahead of the precrack in the Al2O3 matrix. When the crack begins to propagate at a strain of 2%, the nanoparticles closest to the advancing crack distort to create nanochannels through which silica flows toward the crack and stops its growth. At this strain, the Al2O3 matrix at the interface of SiC/SiO2 nanoparticles forms facets along the prismatic (A) ⟨2̅110⟩ and prismatic (M) ⟨1̅010⟩ planes. These facets act as nucleation sites for the growth of multiple secondary amorphous grains in the Al2O3 matrix. These grains grow with an increase in the applied strain. Voids and nanocracks form in the grain boundaries but are again healed by diffusion of silica from the nanoparticles.
Collapse
|
4
|
Janus dendrimersomes coassembled from fluorinated, hydrogenated, and hybrid Janus dendrimers as models for cell fusion and fission. Proc Natl Acad Sci U S A 2017; 114:E7045-E7053. [PMID: 28784782 DOI: 10.1073/pnas.1708380114] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.
Collapse
|
5
|
O'Connor J, Day P, Mandal P, Revell A. Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice Boltzmann method play? Integr Biol (Camb) 2016; 8:589-602. [PMID: 27068565 DOI: 10.1039/c6ib00009f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patient-specific simulations, efficient parametric analyses, and the study of complex processes that are otherwise experimentally intractable are facilitated through the use of Computational Fluid Dynamics (CFD) to study biological flows. This review discusses various CFD methodologies that have been applied across different biological scales, from cell to organ level. Through this discussion the lattice Boltzmann method (LBM) is highlighted as an emerging technique capable of efficiently simulating fluid problems across the midrange of scales; providing a practical analytical tool compared to methods more attuned to the extremities of scale. Furthermore, the merits of the LBM are highlighted through examples of previous applications and suggestions for future research are made. The review focusses on applications in the midrange bracket, such as cell-cell interactions, the microcirculation, and microfluidic devices; wherein the inherent mesoscale nature of the LBM renders it well suited to the incorporation of fluid-structure interaction effects, molecular/particle interactions and interfacial dynamics. The review demonstrates that the LBM has the potential to become a valuable tool across a range of emerging areas in bio-CFD, such as understanding and predicting disease, designing lab-on-a-chip devices, and elucidating complex biological processes.
Collapse
Affiliation(s)
- Joseph O'Connor
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, UKM13 9PL.
| | | | | | | |
Collapse
|
6
|
|
7
|
Li J, Shklyaev OE, Li T, Liu W, Shum H, Rozen I, Balazs AC, Wang J. Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. NANO LETTERS 2015; 15:7077-7085. [PMID: 26383602 DOI: 10.1021/acs.nanolett.5b03140] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems' dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive "patches" to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery.
Collapse
Affiliation(s)
- Jinxing Li
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Tianlong Li
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Wenjuan Liu
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Henry Shum
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Isaac Rozen
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
8
|
Lai GW, Chang SJ, Lee JT, Liu H, Li CC. Conductive microcapsules for self-healing electric circuits. RSC Adv 2015. [DOI: 10.1039/c5ra22021a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Well dispersed conductive microcapsules can be processed directly with inorganic-based Ag paste and perform high restoration efficiency for as-cast electrical circuits.
Collapse
Affiliation(s)
- G. W. Lai
- Department of Materials & Mineral Resources Engineering
- Institute of Materials Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - S. J. Chang
- Material and Chemical Research Laboratories
- Industrial Technology Research Institute
- Hsinchu 30011
- Taiwan
| | - J. T. Lee
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
- Department of Medicinal and Applied Chemistry
| | - H. Liu
- Department of Materials & Mineral Resources Engineering
- Institute of Materials Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - C. C. Li
- Department of Materials & Mineral Resources Engineering
- Institute of Materials Science and Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|
9
|
Yeh PD, Alexeev A. Mesoscale modelling of environmentally responsive hydrogels: emerging applications. Chem Commun (Camb) 2015; 51:10083-95. [DOI: 10.1039/c5cc01027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review recent advances in mesoscale computational modeling, focusing on dissipative particle dynamics, used to probe stimuli-sensitive behavior of hydrogels.
Collapse
Affiliation(s)
- Peter D. Yeh
- George W. Woodruff School of Mechanical Engineering
- Georgia Institute of Technology
- USA
| | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering
- Georgia Institute of Technology
- USA
| |
Collapse
|
10
|
Bosia F, Abdalrahman T, Pugno NM. Self-healing of hierarchical materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1123-1133. [PMID: 24364755 DOI: 10.1021/la403497z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a theoretical and numerical analysis of the mechanical behavior of self-healing materials using an analytical model and numerical calculations both based on a Hierarchical Fiber Bundle Model, and applying them to graphene- or carbon-nanotube-based materials. The self-healing process can be described essentially through a single parameter, that is, the healing rate, but numerical simulations also highlight the influence of the location of the healing process on the overall strengthening and toughening of the material. The role of hierarchy is discussed, showing that full-scale hierarchical structures can in fact acquire more favorable properties than smaller, nonhierarchical ones through interaction with the self-healing process, thus inverting the common notion in fracture mechanics that specimen strength increases with decreasing size. Further, the study demonstrates that the developed analytical and numerical tools can be useful to develop strategies for the optimization of strength and toughness of synthetic bioinspired materials.
Collapse
Affiliation(s)
- Federico Bosia
- Department of Physics and "Nanostructured Interfaces and Surfaces" Centre, Università di Torino , Via P. Giuria 1, 10125 Torino, Italy
| | | | | |
Collapse
|
11
|
Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol 2013; 31:426-34. [DOI: 10.1016/j.tibtech.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
12
|
Walther A, Müller AHE. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem Rev 2013; 113:5194-261. [DOI: 10.1021/cr300089t] [Citation(s) in RCA: 1328] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andreas Walther
- DWI at RWTH Aachen University − Institute for Interactive Materials Research, D-52056 Aachen, Germany
| | - Axel H. E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, D-55099 Mainz,
Germany
| |
Collapse
|
13
|
Kratz K, Narasimhan A, Tangirala R, Moon S, Revanur R, Kundu S, Kim HS, Crosby AJ, Russell TP, Emrick T, Kolmakov G, Balazs AC. Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. NATURE NANOTECHNOLOGY 2012; 7:87-90. [PMID: 22231663 DOI: 10.1038/nnano.2011.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Nanoparticles have useful properties, but it is often important that they only start working after they are placed in a desired location. The encapsulation of nanoparticles allows their function to be preserved until they are released at a specific time or location, and this has been exploited in the development of self-healing materials and in applications such as drug delivery. Encapsulation has also been used to stabilize and control the release of substances, including flavours, fragrances and pesticides. We recently proposed a new technique for the repair of surfaces called 'repair-and-go'. In this approach, a flexible microcapsule filled with a solution of nanoparticles rolls across a surface that has been damaged, stopping to repair any defects it encounters by releasing nanoparticles into them, then moving on to the next defect. Here, we experimentally demonstrate the repair-and-go approach using droplets of oil that are stabilized with a polymer surfactant and contain CdSe nanoparticles. We show that these microcapsules can find the cracks on a surface and selectively deliver the nanoparticle contents into the crack, before moving on to find the next crack. Although the microcapsules are too large to enter the cracks, their flexible walls allow them to probe and adhere temporarily to the interior of the cracks. The release of nanoparticles is made possible by the thin microcapsule wall (comparable to the diameter of the nanoparticles) and by the favourable (hydrophobic-hydrophobic) interactions between the nanoparticle and the cracked surface.
Collapse
Affiliation(s)
- Katrina Kratz
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 2011; 63:730-47. [PMID: 21463658 DOI: 10.1016/j.addr.2011.03.010] [Citation(s) in RCA: 484] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022]
Abstract
Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine.
Collapse
Affiliation(s)
- Mihaela Delcea
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam-Golm, Germany
| | | | | |
Collapse
|
15
|
Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB. Polymeric microcapsules with light responsive properties for encapsulation and release. Adv Colloid Interface Sci 2010; 158:2-14. [PMID: 19720369 DOI: 10.1016/j.cis.2009.07.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/09/2009] [Accepted: 07/18/2009] [Indexed: 11/24/2022]
Abstract
This review is dedicated to recent developments on the topic of light sensitive polymer-based microcapsules. The microcapsules discussed are constructed using the layer-by-layer self-assembly method, which consists in absorbing oppositely charged polyelectrolytes onto charged sacrificial particles. Microcapsules display a broad spectrum of qualities over other existing microdelivery systems such as high stability, longevity, versatile construction and a variety of methods to encapsulate and release substances. Release and encapsulation of materials by light is a particularly interesting topic. Microcapsules can be made sensitive to light by incorporation of light sensitive polymers, functional dyes and metal nanoparticles. Optically active substances can be inserted into the shell during their assembly as a polymer complex or following the shell preparation. Ultraviolet-addressable microcapsules were shown to allow for remote encapsulation and release of materials. Visible- and infrared- addressable microcapsules offer a large array of release strategies for capsules, from destructive to highly sensitive reversible approaches. Besides the Introduction and Conclusions, this review contains in four sections reviewing the effects of light 1) on polymer-based microcapsules, 2) microcapsules containing metal nanoparticles and 3) functional dyes, as well as a fourth section that revisits the implications of light addressable polymeric microcapsules as a microdelivery system for biological applications.
Collapse
|
16
|
Kolmakov GV, Revanur R, Tangirala R, Emrick T, Russell TP, Crosby AJ, Balazs AC. Using nanoparticle-filled microcapsules for site-specific healing of damaged Substrates: creating a "repair-and-go" system. ACS NANO 2010; 4:1115-1123. [PMID: 20088593 DOI: 10.1021/nn901296y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule's shell to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are driven to leave this region by the imposed flow. We also characterize the particle deposition process for these two scenarios, showing that the deposition is greater for the arrested capsules. We then determine the effect of utilizing a pulsatile shear flow and show that this flow field can lead to an effective "repair-and-go" system where the microcarriers not only deliver a high volume fraction of particles into the crack but also leave the fissure and, thus, can potentially repair additional damage within the system.
Collapse
Affiliation(s)
- German V Kolmakov
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V, Müller AHE. Self-Assembly of Janus Cylinders into Hierarchical Superstructures. J Am Chem Soc 2009; 131:4720-8. [DOI: 10.1021/ja808614q] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Walther
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Markus Drechsler
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Sabine Rosenfeldt
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Ludger Harnau
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Matthias Ballauff
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Volker Abetz
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| | - Axel H. E. Müller
- Makromolekulare Chemie II and Physikalische Chemie I, Bayreuther Zentrum für Kolloide and Grenzflächen, Universität Bayreuth, D-95440 Bayreuth, Germany, Max-Planck-Institut für Metallforschung and Institut für Theoretische and Angewandte Physik, Universität Stuttgart, D-70569 Stuttgart, Germany, and Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany
| |
Collapse
|
18
|
Bédard MF, Sadasivan S, Sukhorukov GB, Skirtach A. Assembling polyelectrolytes and porphyrins into hollow capsules with laser-responsive oxidative properties. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b818774f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Walther A, Müller AHE. Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. Chem Commun (Camb) 2009:1127-9. [DOI: 10.1039/b820507h] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
|
21
|
Affiliation(s)
- Nancy Sottos
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|