1
|
Moškon M, Komac R, Zimic N, Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Davey JA, Wilson CJ. Engineered signal-coupled inducible promoters: measuring the apparent RNA-polymerase resource budget. Nucleic Acids Res 2020; 48:9995-10012. [PMID: 32890400 PMCID: PMC7515704 DOI: 10.1093/nar/gkaa734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Inducible promoters are a central regulatory component in synthetic biology, metabolic engineering, and protein production for laboratory and commercial uses. Many of these applications utilize two or more exogenous promoters, imposing a currently unquantifiable metabolic burden on the living system. Here, we engineered a collection of inducible promoters (regulated by LacI-based transcription factors) that maximize the free-state of endogenous RNA polymerase (RNAP). We leveraged this collection of inducible promotors to construct simple two-channel logical controls that enabled us to measure metabolic burden – as it relates to RNAP resource partitioning. The two-channel genetic circuits utilized sets of signal-coupled transcription factors that regulate cognate inducible promoters in a coordinated logical fashion. With this fundamental genetic architecture, we evaluated the performance of each inducible promoter as discrete operations, and as coupled systems to evaluate and quantify the effects of resource partitioning. Obtaining the ability to systematically and accurately measure the apparent RNA-polymerase resource budget will enable researchers to design more robust genetic circuits, with significantly higher fidelity. Moreover, this study presents a workflow that can be used to better understand how living systems adapt RNAP resources, via the complementary pairing of constitutive and regulated promoters that vary in strength.
Collapse
Affiliation(s)
- James A Davey
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, USA
| |
Collapse
|
3
|
Herrera-Delgado E, Briscoe J, Sollich P. Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors. PHYSICAL REVIEW RESEARCH 2020; 2:043069. [PMID: 36855604 PMCID: PMC7614247 DOI: 10.1103/physrevresearch.2.043069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mathematical approaches from dynamical systems theory are used in a range of fields. This includes biology where they are used to describe processes such as protein-protein interaction and gene regulatory networks. As such networks increase in size and complexity, detailed dynamical models become cumbersome, making them difficult to explore and decipher. This necessitates the application of simplifying and coarse graining techniques to derive explanatory insight. Here we demonstrate that Zwanzig-Mori projection methods can be used to arbitrarily reduce the dimensionality of dynamical networks while retaining their dynamical properties. We show that a systematic expansion around the quasi-steady-state approximation allows an explicit solution for memory functions without prior knowledge of the dynamics. The approach not only preserves the same steady states but also replicates the transients of the original system. The method correctly predicts the dynamics of multistable systems as well as networks producing sustained and damped oscillations. Applying the approach to a gene regulatory network from the vertebrate neural tube, a well-characterized developmental transcriptional network, identifies features of the regulatory network responsible for its characteristic transient behavior. Taken together, our analysis shows that this method is broadly applicable to multistable dynamical systems and offers a powerful and efficient approach for understanding their behavior.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, United Kingdom
| | - Peter Sollich
- Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom and Institut für Theoretische Physik, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Han M, Zhang L, Wang J, Pan W. Actor-Critic Reinforcement Learning for Control With Stability Guarantee. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3011351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Joanito I, Yan CCS, Chu JW, Wu SH, Hsu CP. Basal leakage in oscillation: Coupled transcriptional and translational control using feed-forward loops. PLoS Comput Biol 2020; 16:e1007740. [PMID: 32881861 PMCID: PMC7494099 DOI: 10.1371/journal.pcbi.1007740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/16/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock’s system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant’s clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system. For circadian clocks, several current models had successfully captured the essential dynamic behavior of the clock system mainly with transcriptional regulation. Previous studies have shown that the 26S proteasome degradation controls are important in maintaining the stability of circadian rhythms. However, how the loss-of-function or over-expression mutant of this targeted degradations lead to unstable oscillation is still unclear. In this work, we investigate the importance of coupled transcriptional and post-translational feedback loop in the circadian oscillator. With general models our study indicate that the unstable behavior of degradation mutants could be caused by the increase in the basal level of the clock genes. We found that coupling a non-linear degradation control into this transcriptional based oscillator using feed-forward loop improves the robustness of the oscillator. Using this finding, we further predict some plausible regulators of Arabidopsis’s E3 ligase protein such as COP1 and SINAT5. Hence, our results provide insights on the importance of coupling transcription and post-translation controls in the clock system.
Collapse
Affiliation(s)
- Ignasius Joanito
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Jhih-Wei Chu
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Page KM, Perez-Carrasco R. Degradation rate uniformity determines success of oscillations in repressive feedback regulatory networks. J R Soc Interface 2019; 15:rsif.2018.0157. [PMID: 29743273 PMCID: PMC6000169 DOI: 10.1098/rsif.2018.0157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 12/03/2022] Open
Abstract
Ring oscillators are biochemical circuits consisting of a ring of interactions capable of sustained oscillations. The nonlinear interactions between genes hinder the analytical insight into their function, usually requiring computational exploration. Here, we show that, despite the apparent complexity, the stability of the unique steady state in an incoherent feedback ring depends only on the degradation rates and a single parameter summarizing the feedback of the circuit. Concretely, we show that the range of regulatory parameters that yield oscillatory behaviour is maximized when the degradation rates are equal. Strikingly, this result holds independently of the regulatory functions used or number of genes. We also derive properties of the oscillations as a function of the degradation rates and number of nodes forming the ring. Finally, we explore the role of mRNA dynamics by applying the generic results to the specific case with two naturally different degradation timescales.
Collapse
Affiliation(s)
- Karen M Page
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| | - Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
7
|
Kuntz J, Thomas P, Stan GB, Barahona M. Bounding the stationary distributions of the chemical master equation via mathematical programming. J Chem Phys 2019; 151:034109. [PMID: 31325941 DOI: 10.1063/1.5100670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The stochastic dynamics of biochemical networks are usually modeled with the chemical master equation (CME). The stationary distributions of CMEs are seldom solvable analytically, and numerical methods typically produce estimates with uncontrolled errors. Here, we introduce mathematical programming approaches that yield approximations of these distributions with computable error bounds which enable the verification of their accuracy. First, we use semidefinite programming to compute increasingly tighter upper and lower bounds on the moments of the stationary distributions for networks with rational propensities. Second, we use these moment bounds to formulate linear programs that yield convergent upper and lower bounds on the stationary distributions themselves, their marginals, and stationary averages. The bounds obtained also provide a computational test for the uniqueness of the distribution. In the unique case, the bounds form an approximation of the stationary distribution with a computable bound on its error. In the nonunique case, our approach yields converging approximations of the ergodic distributions. We illustrate our methodology through several biochemical examples taken from the literature: Schlögl's model for a chemical bifurcation, a two-dimensional toggle switch, a model for bursty gene expression, and a dimerization model with multiple stationary distributions.
Collapse
Affiliation(s)
- Juan Kuntz
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Verd B, Monk NAM, Jaeger J. Modularity, criticality, and evolvability of a developmental gene regulatory network. eLife 2019; 8:e42832. [PMID: 31169494 PMCID: PMC6645726 DOI: 10.7554/elife.42832] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
The existence of discrete phenotypic traits suggests that the complex regulatory processes which produce them are functionally modular. These processes are usually represented by networks. Only modular networks can be partitioned into intelligible subcircuits able to evolve relatively independently. Traditionally, functional modularity is approximated by detection of modularity in network structure. However, the correlation between structure and function is loose. Many regulatory networks exhibit modular behaviour without structural modularity. Here we partition an experimentally tractable regulatory network-the gap gene system of dipteran insects-using an alternative approach. We show that this system, although not structurally modular, is composed of dynamical modules driving different aspects of whole-network behaviour. All these subcircuits share the same regulatory structure, but differ in components and sensitivity to regulatory interactions. Some subcircuits are in a state of criticality, while others are not, which explains the observed differential evolvability of the various expression features in the system.
Collapse
Affiliation(s)
- Berta Verd
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI)KlosterneuburgAustria
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicholas AM Monk
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUnited States
| | - Johannes Jaeger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI)KlosterneuburgAustria
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
- Center for Systems Biology Dresden (CSBD)DresdenGermany
- Complexity Science Hub (CSH)ViennaAustria
- Centre de Recherches Interdisciplinaires (CRI)ParisFrance
| |
Collapse
|
9
|
Oscillations in well-mixed, deterministic feedback systems: Beyond ring oscillators. J Theor Biol 2019; 481:44-53. [PMID: 31059715 PMCID: PMC6859483 DOI: 10.1016/j.jtbi.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023]
Abstract
I present a way of breaking down regulatory networks to find Hopf bifurcations. This helps find optimal conditions for oscillations in dynamical systems models of these networks. In a model of negative auto-regulation of a gene by its dimeric protein, it is optimal for the monomer to degrade faster than the mRNA and the mRNA to degrade faster than the dimer. Adding a weak positive feedback loop to a repressilator increases the probability of oscillations. The optimal degradation rate of species in the sub-loop is higher than that of species outside it. The opposite is true for a negative feedback sub-loop or a very strong positive feedback sub-loop.
A ring oscillator is a system in which one species regulates the next, which regulates the next and so on until the last species regulates the first. In addition, the number of the regulations which are negative, and so result in a reduction in the regulated species, is odd, making the overall feedback in the loop negative. In ring oscillators, the probability of oscillations is maximised if the degradation rates of the species are equal. When there is more than one loop in the regulatory network, the dynamics can be more complicated. Here, a systematic way of organising the characteristic equation of ODE models of regulatory networks is provided. This facilitates the identification of Hopf bifurcations. It is shown that the probability of oscillations in non-ring systems is maximised for unequal degradation rates. For example, when there is a ring and a second ring employing a subset of the genes in the first ring, then the probability of oscillations is maximised when the species in the sub-ring degrade more slowly than those outside, for a negative feedback subring. When the sub-ring forms a positive feedback loop, the optimal degradation rates are larger for the species in the sub-ring, provided the positive feedback is not too strong. By contrast, optimal degradation rates are smaller for the species in the sub-ring, when the positive feedback is very strong. Adding a positive feedback loop to a repressilator increases the probability of oscillations, provided the positive feedback is not too strong, whereas adding a negative feedback loop decreases the probability of oscillations. The work is illustrated with numerical simulations of example systems: an autoregulatory gene model in which transcription is downregulated by the protein dimer and three-species and four-species gene regulatory network examples.
Collapse
|
10
|
Tomazou M, Barahona M, Polizzi KM, Stan GB. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation. Cell Syst 2018; 6:508-520.e5. [PMID: 29680377 DOI: 10.1016/j.cels.2018.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable.
Collapse
Affiliation(s)
- Marios Tomazou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Perez-Carrasco R, Barnes CP, Schaerli Y, Isalan M, Briscoe J, Page KM. Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Syst 2018; 6:521-530.e3. [PMID: 29574056 PMCID: PMC5929911 DOI: 10.1016/j.cels.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors.
Collapse
Affiliation(s)
- Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK.
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, WC1E 6BT London, UK
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
12
|
Vasylchenkova A, Mraz M, Zimic N, Moskon M. Classical Mechanics Approach Applied to Analysis of Genetic Oscillators. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:721-727. [PMID: 27076464 DOI: 10.1109/tcbb.2016.2550456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here, we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behavior system reflects (i.e., oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.
Collapse
|
13
|
Hellen EH, Volkov E. Flexible dynamics of two quorum-sensing coupled repressilators. Phys Rev E 2017; 95:022408. [PMID: 28297929 DOI: 10.1103/physreve.95.022408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/07/2022]
Abstract
Genetic oscillators play important roles in cell life regulation. The regulatory efficiency usually depends strongly on the emergence of stable collective dynamic modes, which requires designing the interactions between genetic networks. We investigate the dynamics of two identical synthetic genetic repressilators coupled by an additional plasmid which implements quorum sensing (QS) in each network thereby supporting global coupling. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, QS stimulates the transcriptional activity of chosen genes providing for competition between inhibitory and stimulatory activities localized in those genes. The "promoter strength", the Hill cooperativity coefficient of transcription repression, and the coupling strength, i.e., parameters controlling the basic rates of genetic reactions, were chosen for extensive bifurcation analysis. The results are presented as a map of dynamic regimes. We found that the remarkable multistability of the antiphase limit cycle and stable homogeneous and inhomogeneous steady states exists over broad ranges of control parameters. We studied the antiphase limit cycle stability and the evolution of irregular oscillatory regimes in the parameter areas where the antiphase cycle loses stability. In these regions we observed developing complex oscillations, collective chaos, and multistability between regular limit cycles and complex oscillations over uncommonly large intervals of coupling strength. QS coupling stimulates the appearance of intrachaotic periodic windows with spatially symmetric and asymmetric partial limit cycles which, in turn, change the type of chaos from a simple antiphase character into chaos composed of pieces of the trajectories having alternating polarity. The very rich dynamics discovered in the system of two identical simple ring oscillators may serve as a possible background for biological phenotypic diversification, as well as a stimulator to search for similar coupling in oscillator arrays in other areas of nature, e.g., in neurobiology, ecology, climatology, etc.
Collapse
Affiliation(s)
- Edward H Hellen
- Department of Physics & Astronomy, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Evgeny Volkov
- Department of Theoretical Physics, Lebedev Physical Institute, Moscow, Russia
| |
Collapse
|
14
|
Macnamara CK, Chaplain MAJ. Diffusion driven oscillations in gene regulatory networks. J Theor Biol 2016; 407:51-70. [DOI: 10.1016/j.jtbi.2016.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/24/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
|
15
|
Mina P, Tsaneva-Atanasova K, Bernardo MD. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model. ACS Synth Biol 2016; 5:639-53. [PMID: 27110835 DOI: 10.1021/acssynbio.5b00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
Collapse
Affiliation(s)
| | | | - Mario di Bernardo
- Department
of Information and Computer Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Boada Y, Reynoso-Meza G, Picó J, Vignoni A. Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC SYSTEMS BIOLOGY 2016; 10:27. [PMID: 26968941 PMCID: PMC4788947 DOI: 10.1186/s12918-016-0269-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Background Model based design plays a fundamental role in synthetic biology. Exploiting modularity, i.e. using biological parts and interconnecting them to build new and more complex biological circuits is one of the key issues. In this context, mathematical models have been used to generate predictions of the behavior of the designed device. Designers not only want the ability to predict the circuit behavior once all its components have been determined, but also to help on the design and selection of its biological parts, i.e. to provide guidelines for the experimental implementation. This is tantamount to obtaining proper values of the model parameters, for the circuit behavior results from the interplay between model structure and parameters tuning. However, determining crisp values for parameters of the involved parts is not a realistic approach. Uncertainty is ubiquitous to biology, and the characterization of biological parts is not exempt from it. Moreover, the desired dynamical behavior for the designed circuit usually results from a trade-off among several goals to be optimized. Results We propose the use of a multi-objective optimization tuning framework to get a model-based set of guidelines for the selection of the kinetic parameters required to build a biological device with desired behavior. The design criteria are encoded in the formulation of the objectives and optimization problem itself. As a result, on the one hand the designer obtains qualitative regions/intervals of values of the circuit parameters giving rise to the predefined circuit behavior; on the other hand, he obtains useful information for its guidance in the implementation process. These parameters are chosen so that they can effectively be tuned at the wet-lab, i.e. they are effective biological tuning knobs. To show the proposed approach, the methodology is applied to the design of a well known biological circuit: a genetic incoherent feed-forward circuit showing adaptive behavior. Conclusion The proposed multi-objective optimization design framework is able to provide effective guidelines to tune biological parameters so as to achieve a desired circuit behavior. Moreover, it is easy to analyze the impact of the context on the synthetic device to be designed. That is, one can analyze how the presence of a downstream load influences the performance of the designed circuit, and take it into account. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0269-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yadira Boada
- Institut d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, Valencia, Spain
| | - Gilberto Reynoso-Meza
- Industrial and Systems Engineering Graduate Program (PPGEPS), Pontificial Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Jesús Picó
- Institut d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, Valencia, Spain
| | - Alejandro Vignoni
- Institut d'Automàtica i Informàtica Industrial, Universitat Politècnica de València, Valencia, Spain. .,Present Address: Center for Systems Biology Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
17
|
Chen PK, Lin CL. Synthesis of Genetic Clock with Combinational Biologic Circuits. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1206-1212. [PMID: 26451832 DOI: 10.1109/tcbb.2015.2396060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The potential of genetic clock lies in its role to triggering logic reaction for sequential biological circuits. In general, biochemical reaction of the biological system is extremely slow. However, a square wave generator used as a genetic clock the transient response should be fast enough to catch the reaction change between two logic levels. Therefore, the requirement for instantaneous changes in logic status is not likely to exist in biological systems. This paper presents a method of synthesizing a genetic clock generator based on the combination of a toggle switch with two biological logic gates. A dual repressor is used to connect the two fundamental biologic circuits. Analysis of the characteristic responses of this genetic clock with its relation to the key parameters is provided.
Collapse
|
18
|
Bordon J, Moskon M, Zimic N, Mraz M. Fuzzy Logic as a Computational Tool for Quantitative Modelling of Biological Systems with Uncertain Kinetic Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1199-1205. [PMID: 26451831 DOI: 10.1109/tcbb.2015.2424424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative modelling of biological systems has become an indispensable computational approach in the design of novel and analysis of existing biological systems. However, kinetic data that describe the system's dynamics need to be known in order to obtain relevant results with the conventional modelling techniques. These data are often hard or even impossible to obtain. Here, we present a quantitative fuzzy logic modelling approach that is able to cope with unknown kinetic data and thus produce relevant results even though kinetic data are incomplete or only vaguely defined. Moreover, the approach can be used in the combination with the existing state-of-the-art quantitative modelling techniques only in certain parts of the system, i.e., where kinetic data are missing. The case study of the approach proposed here is performed on the model of three-gene repressilator.
Collapse
|
19
|
Potapov I, Zhurov B, Volkov E. Multi-stable dynamics of the non-adiabatic repressilator. J R Soc Interface 2015; 12:20141315. [PMID: 25631570 PMCID: PMC4345497 DOI: 10.1098/rsif.2014.1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/02/2015] [Indexed: 11/12/2022] Open
Abstract
The assumption of the fast binding of transcription factors (TFs) to promoters is a typical point in studies of synthetic genetic circuits functioning in bacteria. Although the assumption is effective for simplifying the models, it becomes questionable in the light of in vivo measurements of the times TF spends searching for its cognate DNA sites. We investigated the dynamics of the full idealized model of the paradigmatic genetic oscillator, the repressilator, using deterministic mathematical modelling and stochastic simulations. We found (using experimentally approved parameter values) that decreases in the TF binding rate changes the type of transition between steady state and oscillation. As a result, this gives rise to the hysteresis region in the parameter space, where both the steady state and the oscillation coexist. We further show that the hysteresis is persistent over a considerable range of the parameter values, but the presence of the oscillations is limited by the low rate of TF dimer degradation. Finally, the stochastic simulation of the model confirms the hysteresis with switching between the two attractors, resulting in highly skewed period distributions. Moreover, intrinsic noise stipulates trains of large-amplitude modulations around the stable steady state outside the hysteresis region, which makes the period distributions bimodal.
Collapse
Affiliation(s)
- Ilya Potapov
- Department of Mathematics, Tampere University of Technology, PO Box 553, Tampere 33101, Finland
| | - Boris Zhurov
- Department of Theoretical Physics, Lebedev Physical Institution, Leninskii 53, Moscow, Russia
| | - Evgeny Volkov
- Department of Theoretical Physics, Lebedev Physical Institution, Leninskii 53, Moscow, Russia
| |
Collapse
|
20
|
Horikawa Y. Effects of asymmetry in an output function on the pinning of rotating waves in a ring neural oscillator with asymmetric bidirectional coupling and self-coupling. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cyclic negative feedback systems: what is the chance of oscillation? Bull Math Biol 2014; 76:1155-93. [PMID: 24756857 DOI: 10.1007/s11538-014-9959-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Many biological oscillators have a cyclic structure consisting of negative feedback loops. In this paper, we analyze the impact that the addition of a positive or a negative self-feedback loop has on the oscillatory behavior of the three negative feedback oscillators proposed by Tsai et al. (Science 231:126-129, 2008) where, in contrast with numerous oscillator models, the interactions between elements occur via the modulation of the degradation rates. Through analytical and computational studies we show that an additional self-feedback affects the oscillatory behavior. In the high-cooperativity limit, i.e., for large Hill coefficients, we derive exact analytical conditions for oscillations and show that the relative location between the dissociation constants of the Hill functions and the ratio of kinetic parameters determines the possibility of oscillatory activities. We compute analytically the probability of oscillations for the three models and show that the smallest domain of periodic behavior is obtained for the negative-plus-negative feedback system whereas the additional positive self-feedback loop does not modify significantly the chance to oscillate. We numerically investigate to what extent the properties obtained in the sharp situation applied in the smooth case. Results suggest that a switch-like coupling behavior, a time-scale separation, and a repressilator-type architecture with an even number of elements facilitate the emergence of sustained oscillations in biological systems. An additional positive self-feedback loop produces robustness and adaptability whereas an additional negative self-feedback loop reduces the chance to oscillate.
Collapse
|
22
|
Horikawa Y. Effects of asymmetric coupling and self-coupling on metastable dynamical transient rotating waves in a ring of sigmoidal neurons. Neural Netw 2014; 53:26-39. [PMID: 24531038 DOI: 10.1016/j.neunet.2014.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/08/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
Abstract
Transient rotating waves in a ring of sigmoidal neurons with asymmetric bidirectional coupling and self-coupling were studied. When a pair of stable steady states and an unstable traveling wave coexisted, rotating waves propagating in a ring were generated in transients. The pinning (propagation failure) of the traveling wave occurred in the presence of asymmetric coupling and self-coupling, and its conditions were obtained. A kinematical equation for the propagation of wave fronts of the traveling and rotating waves was then derived for a large output gain of neurons. The kinematical equation showed that the duration of transient rotating waves increases exponentially with the number of neurons as that in a ring of unidirectionally coupled neurons (metastable dynamical transients). However, the exponential growth rate depended on the asymmetry of bidirectional coupling and the strength of self-coupling. The rate was equal to the propagation time of the traveling wave (a reciprocal of the propagation speed), and it increased near pinned regions. Then transient rotating waves could show metastable dynamics (extremely long duration) even in a ring of a small number of neurons.
Collapse
Affiliation(s)
- Yo Horikawa
- Faculty of Engineering, Kagawa University, Takamatsu, 761-0396, Japan.
| |
Collapse
|
23
|
Abstract
The potential of the clock lies in its role of triggering logic reaction for sequential biological circuits. This research introduces an idea of designing a genetic clock generator by Fourier series based on the genetic oscillators. The authors generalise the design idea using a combination of fundamental sinusoidal signals. Since biochemical reaction of the biological system is extremely slow, however, transition between minimal and maximal levels is instantaneous for an ideal clock signal; it is thus not directly realisable in biological systems. That means it would be hard to directly synthesize a square wave generator for use as a genetic clock. They apply Fourier series to represent a square wave as a finite summation of sinusoidal waves generated by some genetic oscillators with different harmonic oscillating frequencies, in which the amplitude alternates at a constant frequency between the fixed minimal and maximal levels with the same duration of time.
Collapse
|
24
|
Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan GBV, Papachristodoulou A, Polizzi K. Tuning the dials of Synthetic Biology. MICROBIOLOGY-SGM 2013; 159:1236-1253. [PMID: 23704788 PMCID: PMC3749727 DOI: 10.1099/mic.0.067975-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others.
Collapse
Affiliation(s)
- James A J Arpino
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Edward J Hancock
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - James Anderson
- St John's College, St Giles, Oxford OX1 3JP, UK.,Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Guy-Bart V Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Karen Polizzi
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.,Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
25
|
Hellen EH, Dana SK, Zhurov B, Volkov E. Electronic implementation of a repressilator with quorum sensing feedback. PLoS One 2013; 8:e62997. [PMID: 23658793 PMCID: PMC3642084 DOI: 10.1371/journal.pone.0062997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 04/01/2013] [Indexed: 11/18/2022] Open
Abstract
We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters.
Collapse
Affiliation(s)
- Edward H Hellen
- Department of Physics & Astronomy, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America.
| | | | | | | |
Collapse
|
26
|
Chang YC, Lin CL, Jennawasin T. Design of synthetic genetic oscillators using evolutionary optimization. Evol Bioinform Online 2013; 9:137-50. [PMID: 23532178 PMCID: PMC3603560 DOI: 10.4137/ebo.s11225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Efforts have been made to establish computer models of genetic oscillation. We have developed a real structured genetic algorithm (RSGA) which combines advantages of the traditional real genetic algorithm (RGA) with those of the structured genetic algorithm (SGA) and applies it as an optimization strategy for genetic oscillator design. For the generalized design, our proposed approach fulfils all types of genes by minimizing the order of oscillator while searching for the optimal network parameters. The design approach is shown to be capable of yielding genetic oscillators with a simpler structure while possessing satisfactory oscillating behavior. In silico experiments show effectiveness of the proposed algorithm to genetic oscillator design. In particular, it is shown that the proposed approach performs better than the traditional GAs in the sense that a cheaper structure of genetic oscillators can be obtained.
Collapse
Affiliation(s)
- Yen-Chang Chang
- Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
27
|
Osella M, Lagomarsino MC. Growth-rate-dependent dynamics of a bacterial genetic oscillator. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012726. [PMID: 23410378 DOI: 10.1103/physreve.87.012726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/22/2012] [Indexed: 05/26/2023]
Abstract
Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular "chassis" in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.
Collapse
Affiliation(s)
- Matteo Osella
- Genomic Physics Group, UMR7238 CNRS Microorganism Genomics, 15, rue de l'École de Médecine, Paris, France.
| | | |
Collapse
|
28
|
Anderson J, Strelkowa N, Stan GB, Douglas T, Savulescu J, Barahona M, Papachristodoulou A. Engineering and ethical perspectives in synthetic biology. Rigorous, robust and predictable designs, public engagement and a modern ethical framework are vital to the continued success of synthetic biology. EMBO Rep 2012; 13:584-90. [PMID: 22699939 PMCID: PMC3389334 DOI: 10.1038/embor.2012.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The applications of synthetic biology will involve the release of artificial life forms into the environment. These organisms will present unique safety challenges that need to be addressed by researchers and regulators to win public engagement and support.
Collapse
Affiliation(s)
- James Anderson
- Department of Engineering Science, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Potapov I, Zhurov B, Volkov E. "Quorum sensing" generated multistability and chaos in a synthetic genetic oscillator. CHAOS (WOODBURY, N.Y.) 2012; 22:023117. [PMID: 22757524 DOI: 10.1063/1.4705085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We model the dynamics of the synthetic genetic oscillator Repressilator equipped with quorum sensing. In addition to a circuit of 3 genes repressing each other in a unidirectional manner, the model includes a phase-repulsive type of the coupling module implemented as the production of a small diffusive molecule-autoinducer (AI). We show that the autoinducer (which stimulates the transcription of a target gene) is responsible for the disappearance of the limit cycle (LC) through the infinite period bifurcation and the formation of a stable steady state (SSS) for sufficiently large values of the transcription rate. We found conditions for hysteresis between the limit cycle and the stable steady state. The parameters' region of the hysteresis is determined by the mRNA to protein lifetime ratio and by the level of transcription-stimulating activity of the AI. In addition to hysteresis, increasing AI-dependent stimulation of transcription may lead to the complex dynamic behavior which is characterized by the appearance of several branches on the bifurcation continuation, containing different regular limit cycles, as well as a chaotic regime. The multistability which is manifested as the coexistence between the stable steady state, limit cycles, and chaos seems to be a novel type of the dynamics for the ring oscillator with the added quorum sensing positive feedback.
Collapse
Affiliation(s)
- I Potapov
- Biophysics Department, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, Russia
| | | | | |
Collapse
|
30
|
Gaudreault M, Drolet F, Viñals J. Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:056214. [PMID: 23004850 DOI: 10.1103/physreve.85.056214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 06/01/2023]
Abstract
We obtain the location of the Hopf bifurcation threshold for a modified van der Pol oscillator, parametrically driven by a stochastic source and including delayed feedback in both position and velocity. We introduce a multiple scale expansion near threshold, and we solve the resulting Fokker-Planck equation associated with the evolution at the slowest time scale. The analytical results are compared with a direct numerical integration of the model equation. Delay modifies the Hopf frequency at threshold and leads to a stochastic bifurcation that is shifted relative to the deterministic limit by an amount that depends on the delay time, the amplitude of the feedback terms, and the intensity of the noise. Interestingly, stochasticity generally increases the region of stability of the limit cycle.
Collapse
|
31
|
Vasić B, Ravanmehr V, Krishnan AR. An information theoretic approach to constructing robust Boolean gene regulatory networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:52-65. [PMID: 21464507 DOI: 10.1109/tcbb.2011.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We introduce a class of finite systems models of gene regulatory networks exhibiting behavior of the cell cycle. The model is an extension of a Boolean network model. The system spontaneously cycles through a finite set of internal states, tracking the increase of an external factor such as cell mass, and also exhibits checkpoints in which errors in gene expression levels due to cellular noise are automatically corrected. We present a 7-gene network based on Projective Geometry codes, which can correct, at every given time, one gene expression error. The topology of a network is highly symmetric and requires using only simple Boolean functions that can be synthesized using genes of various organisms. The attractor structure of the Boolean network contains a single cycle attractor. It is the smallest nontrivial network with such high robustness. The methodology allows construction of artificial cell cycle gene regulatory networks with the number of phases larger than in natural cell cycle.
Collapse
|
32
|
Barnes CP, Silk D, Stumpf MPH. Bayesian design strategies for synthetic biology. Interface Focus 2011; 1:895-908. [PMID: 23226588 DOI: 10.1098/rsfs.2011.0056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/12/2011] [Indexed: 11/12/2022] Open
Abstract
We discuss how statistical inference techniques can be applied in the context of designing novel biological systems. Bayesian techniques have found widespread application and acceptance in the systems biology community, where they are used for both parameter estimation and model selection. Here we show that the same approaches can also be used in order to engineer synthetic biological systems by inferring the structure and parameters that are most likely to give rise to the dynamics that we require a system to exhibit. Problems that are shared between applications in systems and synthetic biology include the vast potential spaces that need to be searched for suitable models and model parameters; the complex forms of likelihood functions; and the interplay between noise at the molecular level and nonlinearity in the dynamics owing to often complex feedback structures. In order to meet these challenges, we have to develop suitable inferential tools and here, in particular, we illustrate the use of approximate Bayesian computation and unscented Kalman filtering-based approaches. These partly complementary methods allow us to tackle a number of recurring problems in the design of biological systems. After a brief exposition of these two methodologies, we focus on their application to oscillatory systems.
Collapse
Affiliation(s)
- Chris P Barnes
- Centre for Integrative Systems Biology and Bioinformatics, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
33
|
Strelkowa N, Barahona M. Transient dynamics around unstable periodic orbits in the generalized repressilator model. CHAOS (WOODBURY, N.Y.) 2011; 21:023104. [PMID: 21721746 DOI: 10.1063/1.3574387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/16/2011] [Indexed: 05/31/2023]
Abstract
We study the temporal dynamics of the generalized repressilator, a network of coupled repressing genes arranged in a directed ring topology, and give analytical conditions for the emergence of a finite sequence of unstable periodic orbits that lead to reachable long-lived oscillating transients. Such transients dominate the finite time horizon dynamics that is relevant in confined, noisy environments such as bacterial cells (see our previous work [Strelkowa and Barahona, J. R. Soc. Interface 7, 1071 (2010)]), and are therefore of interest for bioengineering and synthetic biology. We show that the family of unstable orbits possesses spatial symmetries and can also be understood in terms of traveling wave solutions of kink-like topological defects. The long-lived oscillatory transients correspond to the propagation of quasistable two-kink configurations that unravel over a long time. We also assess the similarities between the generalized repressilator model and other unidirectionally coupled electronic systems, such as magnetic flux gates, which have been implemented experimentally.
Collapse
Affiliation(s)
- Natalja Strelkowa
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
34
|
Purcell O, Savery NJ, Grierson CS, di Bernardo M. A comparative analysis of synthetic genetic oscillators. J R Soc Interface 2010; 7:1503-24. [PMID: 20591848 DOI: 10.1098/rsif.2010.0183] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic biology is a rapidly expanding discipline at the interface between engineering and biology. Much research in this area has focused on gene regulatory networks that function as biological switches and oscillators. Here we review the state of the art in the design and construction of oscillators, comparing the features of each of the main networks published to date, the models used for in silico design and validation and, where available, relevant experimental data. Trends are apparent in the ways that network topology constrains oscillator characteristics and dynamics. Also, noise and time delay within the network can both have constructive and destructive roles in generating oscillations, and stochastic coherence is commonplace. This review can be used to inform future work to design and implement new types of synthetic oscillators or to incorporate existing oscillators into new designs.
Collapse
Affiliation(s)
- Oliver Purcell
- Bristol Centre for Complexity Sciences, Department of Engineering Mathematics, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|