1
|
Costa ADSD, Jeong H, Subbiah R, Park K, Choi IS, Shin JH. Intercellular junction-driven stromal cell stacking in a confined 3D microcavity. APL Bioeng 2024; 8:046109. [PMID: 39525363 PMCID: PMC11549968 DOI: 10.1063/5.0197187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the detailed mechanisms driving fibroblast migration within native tissue settings during pathophysiological events presents a critical research challenge. In this study, we elucidate how stromal cells migrate and contribute to the development of three-dimensional (3D) cellular aggregates within confined microcavities. Integrin α5β1 and β-catenin (β-cat) are central in guiding this collective migration and achieving optimal filling of the microcavity. When β-cat is suppressed, cells tend to migrate more sporadically, leading to less efficient cellular organization. Furthermore, we also detail the pivotal roles of Cx43 and N-cadherin (N-cad) in orchestrating collective migration and in shaping efficient cellular stacking. Suppressing gap junctions, especially Cx43, significantly impacts the extracellular matrix expression, integrin α5 and β1, and other elements in the 3D construct, emphasizing the importance of physicochemical cell-cell interactions. The distribution patterns of N-cad and focal adhesion kinase (FAK) further corroborate the essential roles in forming cell-cell junctions and FAK in establishing the foundational layer that underpins the cell stacking within the microcavity. Interestingly, neither Rho-associated protein kinase (ROCK) nor RhoA significantly alter the cell migration pattern toward microcavity. These findings provide fresh perspectives on fibroblast activities in 3D space, enriching our understanding and offering implications for advancements in wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ramesh Subbiah
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, USA
| | | | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
3
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
4
|
Kim Y, Lee J, Lee S, Jung HI, Kwak B. Anisotropic tumor spheroid remission with binary tumor-microenvironment-on-a-chip. Biosens Bioelectron 2023; 243:115787. [PMID: 39492183 DOI: 10.1016/j.bios.2023.115787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Microphysiological system (MPS) is a powerful tool for the in vitro disease validation platform. It is employed to substantially enhance understanding of tumor and their microenvironments. It aims to assist or replace preclinical studies for validating the efficacy of anti-cancer drugs, precision medicine, and investigating metastatic mechanisms. However, it still faces formidable challenges due to poor and complex usability, low yield, and limited applications for heterogeneous biological samples. Herein, we present a newly developed MPS consisting of a binary tumor-microenvironment-on-a-chip. The system is divided into two independent and separate MPS, each capable of forming a different compartment for the tumor and microenvironment via concurrent processing. These individually formed compartments can be interconnected whenever needed through simple mechanical compression, resulting in a fully integrated tumor-microenvironment-on-a-chip system. This interconnected system enables precise validation of drug efficacy and can be easily separated to retrieve the finished reaction sample for further downstream analysis. In this study, we also propose anisotropic tumor remission by forced convection phenomenon.
Collapse
Affiliation(s)
- Youngwon Kim
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Jaehun Lee
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Sunghan Lee
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Hyo-Il Jung
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Bongseop Kwak
- Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
5
|
Moon HR, Saha S, Mugler A, Han B. Cells function as a ternary logic gate to decide migration direction under integrated chemical and fluidic cues. LAB ON A CHIP 2023; 23:631-644. [PMID: 36524874 PMCID: PMC9926949 DOI: 10.1039/d2lc00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cells sense various environmental cues and subsequently process intracellular signals to decide their migration direction in many physiological and pathological processes. Although several signaling molecules and networks have been identified in these directed migrations, it still remains ambiguous to predict the migration direction under multiple and integrated cues, specifically chemical and fluidic cues. Here, we investigated the cellular signal processing machinery by reverse-engineering directed cell migration under integrated chemical and fluidic cues. We imposed controlled chemical and fluidic cues to cells using a microfluidic platform and analyzed the extracellular coupling of the cues with respect to the cellular detection limit. Then, the cell's migratory behavior was reverse-engineered to build a cellular signal processing system as a logic gate, which is based on a "selection" gate. This framework is further discussed with a minimal intracellular signaling network of a shared pathway model. The proposed framework of the ternary logic gate suggests a systematic view to understand how cells decode multiple cues and make decisions about the migration direction.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Li Q, Ma L, Gao Z, Yin J, Liu P, Yang H, Shen L, Zhou H. Regulable Supporting Baths for Embedded Printing of Soft Biomaterials with Variable Stiffness. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41695-41711. [PMID: 36070996 DOI: 10.1021/acsami.2c09221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) embedded printing is emerging as a potential solution for the fabrication of complex biological structures and with ultrasoft biomaterials. For the supporting medium, bulk gels can support a wide range of bioinks with higher printing resolution as well as better finishing surfaces than granular microgel baths. However, the difficulties of regulating the physical properties of existing bulk gel supporting baths limit the further development of this method. This work has developed a bulk gel supporting bath with easily regulable physical properties to facilitate soft-material fabrication. The proposed bath is composed based on the hydrophobic association between a hydrophobically modified hydroxypropylmethyl cellulose (H-HPMC) and Pluronic F-127 (PF-127). Its rheological properties can be easily regulated; in the preprinting stage by varying the relative concentration of components, during printing by changing the temperature, and postprinting by adding additives with strong hydrophobicity or hydrophilicity. This has made the supporting bath not only available for various bioinks with a range of printing windows but also easy to be removed. Also, the removal strategy is independent of printing conditions like temperature and ions, which empowers the bath to hold great potential for the embedded printing of commonly used biomaterials. The adjustable rheological properties of the bath were leveraged to characterize the embedded printing quantitatively, involving the disturbance during the printing, filament cross-sectional shape, printing resolution, continuity, and the coalescence between adjacent filaments. The match between the bioink and the bath was also explored. Furthermore, low-viscosity bioinks (with 0.008-2.4 Pa s viscosity) were patterned into various 3D complex delicate soft structures (with a 0.5-5 kPa compressive modulus). It is believed that such an easily regulable assembled bath could serve as an available tool to support the complex biological structure fabrication and open unique prospects for personalized medicine.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ziqi Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peng Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Luqi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, People's Republic of China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
7
|
Cheng C, Jae Moon Y, Hwang JY, Chiu GTC, Han B. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2022; 191:122840. [PMID: 35444343 PMCID: PMC9015692 DOI: 10.1016/j.ijheatmasstransfer.2022.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels with embedded functional particulates are widely used to create soft materials with innovative functionalities. In order to advance these soft materials to functional devices and machines, critical technical challenges are the precise positioning of particulates within the hydrogels and the construction of the hydrogels into a complex geometry. Inkjet printing is a promising method for addressing these challenges and ultimately achieving hydrogels with voxelized functionalities, so-called digital hydrogels. However, the development of the inkjet printing process primarily relies on empirical optimization of its printing and curing protocol. In this study, a general scaling law is proposed to predict the transport of particulates within the hydrogel during inkjet printing. This scaling law is based on a hypothesis that water-matrix interaction during the curing of inkjet-printed particle-laden polymeric drops determines the intra-drop particle distribution. Based on the hypothesis, a dimensionless similarity parameter of the water-matrix interaction is proposed, determined by the hydrogel's water evaporation coefficient, particle size, and mechanical properties. The hypothesis was tested by correlating the intra-drop particle distribution to the similarity parameter. The results confirmed the scaling law capable of guiding ink formulation and printing and curing protocol.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Jae Moon
- Korea Institute of Industrial Technology, Ansan, Gyeonggi Do, Republic of Korea
| | - Jun Young Hwang
- Korea Institute of Industrial Technology, Ansan, Gyeonggi Do, Republic of Korea
| | - George T.-C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Chalard AE, Dixon AW, Taberner AJ, Malmström J. Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models. Front Cell Dev Biol 2022; 10:946754. [PMID: 35865624 PMCID: PMC9294371 DOI: 10.3389/fcell.2022.946754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Variations in mechanical properties of the extracellular matrix occurs in various processes, such as tissue fibrosis. The impact of changes in tissue stiffness on cell behaviour are studied in vitro using various types of biomaterials and methods. Stiffness patterning of hydrogel scaffolds, through the use of stiffness gradients for instance, allows the modelling and studying of cellular responses to fibrotic mechanisms. Gelatine methacryloyl (GelMA) has been used extensively in tissue engineering for its inherent biocompatibility and the ability to precisely tune its mechanical properties. Visible light is now increasingly employed for crosslinking GelMA hydrogels as it enables improved cell survival when performing cell encapsulation. We report here, the photopatterning of mechanical properties of GelMA hydrogels with visible light and eosin Y as the photoinitiator using physical photomasks and projection with a digital micromirror device. Using both methods, binary hydrogels with areas of different stiffnesses and hydrogels with stiffness gradients were fabricated. Their mechanical properties were characterised using force indentation with atomic force microscopy, which showed the efficiency of both methods to spatially pattern the elastic modulus of GelMA according to the photomask or the projected pattern. Crosslinking through projection was also used to build constructs with complex shapes. Overall, this work shows the feasibility of patterning the stiffness of GelMA scaffolds, in the range from healthy to pathological stiffness, with visible light. Consequently, this method could be used to build in vitro models of healthy and fibrotic tissue and study the cellular behaviours involved at the interface between the two.
Collapse
Affiliation(s)
- Anaïs E. Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- *Correspondence: Anaïs E. Chalard, ; Jenny Malmström,
| | - Alexander W. Dixon
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- *Correspondence: Anaïs E. Chalard, ; Jenny Malmström,
| |
Collapse
|
9
|
Pamonag M, Hinson A, Burton EJ, Jafari N, Sales D, Babcock S, Basha R, Hu X, Kubow KE. Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling. PLoS One 2022; 17:e0265403. [PMID: 35333902 PMCID: PMC8956187 DOI: 10.1371/journal.pone.0265403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Directed cell migration arises from cells following a microenvironmental gradient (e.g. of a chemokine) or polarizing feature (e.g. a linear structure). However cells not only follow, but in many cases, also generate directionality cues by modifying their microenvironment. This bi-directional relationship is seen in the alignment of extracellular matrix (ECM) fibers ahead of invading cell masses. The forces generated by many migrating cells cause fiber alignment, which in turn promotes further migration in the direction of fiber alignment via contact guidance and durotaxis. While this positive-feedback relationship has been widely described for cells invading en masse, single cells are also able to align ECM fibers, as well as respond to contact guidance and durotaxis cues, and should therefore exhibit the same relationship. In this study, we directly tested this hypothesis by studying the migration persistence of individual HT-1080 fibrosarcoma cells migrating in photocrosslinked collagen matrices with limited remodeling potential. Our results demonstrate that this positive-feedback relationship is indeed a fundamental aspect of cell migration in fibrillar environments. We observed that the cells’ inability to align and condense fibers resulted in a decrease in persistence relative to cells in native collagen matrices and even relative to isotropic (glass) substrates. Further experiments involving 2D collagen and electrospun polymer scaffolds suggest that substrates composed of rigid, randomly oriented fibers reduce cells’ ability to follow another directionality cue by forcing them to meander to follow the available adhesive area (i.e. fibers). Finally, our results demonstrate that the bi-directional relationship between cell remodeling and migration is not a “dimensionality” effect, but a fundamental effect of fibrous substrate structure.
Collapse
Affiliation(s)
- Michael Pamonag
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Abigail Hinson
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Elisha J. Burton
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nojan Jafari
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Dominic Sales
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Sarah Babcock
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rozlan Basha
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Xiaofeng Hu
- Department of Chemistry & Biochemistry and Center for Materials Science, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kristopher E. Kubow
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Badis D, Ouafa D. Comparative study of the therapeutic efficacy of autologous platelet-rich plasma and honey in healing skin wounds in sheep. Vet World 2021; 14:2170-2177. [PMID: 34566336 PMCID: PMC8448649 DOI: 10.14202/vetworld.2021.2170-2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: This investigation is the continuation of a published preliminary study examining the therapeutic efficacy of platelet-rich plasma (PRP) as a topical treatment for skin wounds in sheep. The study aimed to compare the healing effects of autologous PRP with that of natural honey. Materials and Methods: This study involved nine clinically healthy male sheep. After sterile skin preparation, full-thickness longitudinal incision wounds were created on the backs of each animal. The animals were randomly divided into three groups of three sheep each. In Group I, the wounds were treated with PRP; in Group II, the wounds were treated with honey; and in Group III, the wounds were treated with saline solution. The different treatments were administered topically every 3 days. Healing was assessed by a semi-quantitative histopathological study from biopsies taken on the 3rd, 7th, 14th, 21st, and 28th days of healing. The data obtained were compared using the non-parametric Mann–Whitney U-test, and p<0.05 and 0.01 were used to determine the level of significance of the recorded differences. Results: Semi-quantitative histopathological evaluation showed significant differences in the progression of wound healing between the three study groups. Recorded data showed that PRP may reduce inflammation during the first 3 days after the incision. Moreover, the synthesis and organization of collagen fibers were significantly improved in the group treated with PRP compared with those in the group treated with honey. Conclusion: PRP offers a promising therapeutic option for healing skin wounds in sheep compared with honey.
Collapse
Affiliation(s)
- Daikh Badis
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Biotechnology's Laboratory of the Bioactive Molecules and the Cellular Physiopathology, University of Batna 2, Batna, Algeria
| | - Deffa Ouafa
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
| |
Collapse
|
11
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Recent advances in CRISPR technologies for genome editing. Arch Pharm Res 2021; 44:537-552. [PMID: 34164771 DOI: 10.1007/s12272-021-01336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become the most widely used platform in organisms ranging from plants to animals. The CRISPR/Cas system has been extensively modified to increase its efficiency and fidelity. In addition, the fusion of various protein motifs to Cas effector proteins has facilitated diverse set of genetic manipulations, such as base editing, transposition, recombination, and epigenetic regulation. The CRISPR/Cas system is undergoing continuous development to overcome current limitations, including off-target effects, narrow targeting scope, and issues associated with the delivery of CRISPR components for genome engineering and therapeutic approaches. Here, we review recent progress in a diverse array of CRISPR/Cas-based tools. We also describe limitations and concerns related to the use of CRISPR/Cas technologies.
Collapse
|
13
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
14
|
Boismal F, Serror K, Dobos G, Zuelgaray E, Bensussan A, Michel L. [Skin aging: Pathophysiology and innovative therapies]. Med Sci (Paris) 2020; 36:1163-1172. [PMID: 33296633 DOI: 10.1051/medsci/2020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges of the 21st century is the fight against aging, defined as a set of physiological mechanisms altering the physical and intellectual capacities of human beings. Aging of the skin is only one visible part of this process. It is associated with major healing defects linked in part to the alteration of the biomechanical properties of skin cells, mainly dermal fibroblasts. The immune system, another key component in maintaining skin homeostasis and the efficient healing of wounds, also suffers the effects of time: the consequent skin immunosenescence would limit the anti-infectious and vaccine response, while promoting a pro-tumor environment. The main skin damages due to aging, whether intrinsic or extrinsic, will be detailed before listing the effective anti-aging strategies to combat age-related dermal and epidermal stigmas.
Collapse
Affiliation(s)
- Françoise Boismal
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Service de chirurgie plastique et reconstructrice, hôpital Saint-Louis, Paris, France
| | - Gabor Dobos
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Elina Zuelgaray
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| | - Armand Bensussan
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France
| | - Laurence Michel
- Inserm U976 ; Centre de recherche sur la peau ; hôpital Saint-Louis, Paris, France - Service de dermatologie, hôpital Saint Louis, Paris, France
| |
Collapse
|
15
|
Kvick M, Tasiopoulos CP, Barth A, Söderberg LD, Lundell F, Hedhammar M. Cyclic Expansion/Compression of the Air-Liquid Interface as a Simple Method to Produce Silk Fibers. Macromol Biosci 2020; 21:e2000227. [PMID: 33016002 DOI: 10.1002/mabi.202000227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Indexed: 01/23/2023]
Abstract
Self-assembly of recombinant spider silk protein at air-liquid interfaces is used as a starting point to produce homogeneous fiber bundles. The film that is formed on a silk protein solution in a vertically placed syringe is subjected to repeated controlled extension and compression by an oscillating vertical motion. Thereby, a precise breakup of the film can be achieved, followed by transport and roll-up against the syringe wall prior to extraction. Advantages of the method are that it 1) is simple to use; 2) requires a small volume of protein solution (1 mL) at relatively low concentration (1 mg mL-1 ); 3) can be performed under sterile conditions; 4) does not require any use of coagulants; and 5) is compatible with the addition of viable cells during the process, which thereby are integrated uniformly throughout the fiber.
Collapse
Affiliation(s)
| | - Christos P Tasiopoulos
- Institute of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-100 44, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Lars Daniel Söderberg
- Linné FLOW Centre, KTH Mechanics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Fredrik Lundell
- Linné FLOW Centre, KTH Mechanics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - My Hedhammar
- Institute of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
16
|
Moon HR, Ospina-Muñoz N, Noe-Kim V, Yang Y, Elzey BD, Konieczny SF, Han B. Subtype-specific characterization of breast cancer invasion using a microfluidic tumor platform. PLoS One 2020; 15:e0234012. [PMID: 32544183 PMCID: PMC7297326 DOI: 10.1371/journal.pone.0234012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. Presence of multiple subtypes of breast cancers makes the assessment more challenging. In this study, an in-vitro microfluidic assay was developed to quantitatively assess the subtype-specific invasion potential of breast cancers. The developed assay is a microfluidic platform in which a ductal structure of epithelial cancer cells is surrounded with a three-dimensional (3D) collagen matrix. In the developed platform, two triple negative cancer subtypes (MDA-MB-231 and SUM-159PT) invaded into the surrounding matrix but the luminal A subtype, MCF-7, did not. Among invasive subtypes, SUM-159PT cells showed significantly higher invasion and degradation of the surrounding matrix than MDA-MB-231. Interestingly, the cells cultured on the platform expressed higher levels of CD24 than in their conventional 2D cultures. This microfluidic platform may be a useful tool to characterize and predict invasive potential of breast cancer subtypes or patient-derived cells.
Collapse
Affiliation(s)
- Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Natalia Ospina-Muñoz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
- Cellular and Molecular Physiology Group, School of Medicine, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Victoria Noe-Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yi Yang
- Department of Biological Science, Purdue University, West Lafayette, IN, United States of America
| | - Bennett D. Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
| | - Stephen F. Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
17
|
Browning AP, Jin W, Plank MJ, Simpson MJ. Identifying density-dependent interactions in collective cell behaviour. J R Soc Interface 2020; 17:20200143. [PMID: 32343933 DOI: 10.1098/rsif.2020.0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scratch assays are routinely used to study collective cell behaviour in vitro. Typical experimental protocols do not vary the initial density of cells, and typical mathematical modelling approaches describe cell motility and proliferation based on assumptions of linear diffusion and logistic growth. Jin et al. (Jin et al. 2016 J. Theor. Biol. 390, 136-145 (doi:10.1016/j.jtbi.2015.10.040)) find that the behaviour of cells in scratch assays is density-dependent, and show that standard modelling approaches cannot simultaneously describe data initiated across a range of initial densities. To address this limitation, we calibrate an individual-based model to scratch assay data across a large range of initial densities. Our model allows proliferation, motility, and a direction bias to depend on interactions between neighbouring cells. By considering a hierarchy of models where we systematically and sequentially remove interactions, we perform model selection analysis to identify the minimum interactions required for the model to simultaneously describe data across all initial densities. The calibrated model is able to match the experimental data across all densities using a single parameter distribution, and captures details about the spatial structure of cells. Our results provide strong evidence to suggest that motility is density-dependent in these experiments. On the other hand, we do not see the effect of crowding on proliferation in these experiments. These results are significant as they are precisely the opposite of the assumptions in standard continuum models, such as the Fisher-Kolmogorov equation and its generalizations.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
| | - Wang Jin
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
| | - Michael J Plank
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.,Te Pūnaha Matatini, a New Zealand Centre of Research Excellence, New Zealand
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
18
|
Staufer O, Weber S, Bengtson CP, Bading H, Rustom A, Spatz JP. Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies. NANO LETTERS 2019; 19:3244-3255. [PMID: 30950627 PMCID: PMC6727598 DOI: 10.1021/acs.nanolett.9b00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Indexed: 05/02/2023]
Abstract
Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.
Collapse
Affiliation(s)
- Oskar Staufer
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - C. Peter Bengtson
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Amin Rustom
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Varennes J, Moon HR, Saha S, Mugler A, Han B. Physical constraints on accuracy and persistence during breast cancer cell chemotaxis. PLoS Comput Biol 2019; 15:e1006961. [PMID: 30970018 PMCID: PMC6476516 DOI: 10.1371/journal.pcbi.1006961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/22/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023] Open
Abstract
Directed cell motion in response to an external chemical gradient occurs in many biological phenomena such as wound healing, angiogenesis, and cancer metastasis. Chemotaxis is often characterized by the accuracy, persistence, and speed of cell motion, but whether any of these quantities is physically constrained by the others is poorly understood. Using a combination of theory, simulations, and 3D chemotaxis assays on single metastatic breast cancer cells, we investigate the links among these different aspects of chemotactic performance. In particular, we observe in both experiments and simulations that the chemotactic accuracy, but not the persistence or speed, increases with the gradient strength. We use a random walk model to explain this result and to propose that cells’ chemotactic accuracy and persistence are mutually constrained. Our results suggest that key aspects of chemotactic performance are inherently limited regardless of how favorable the environmental conditions are. One of the most ubiquitous and important cell behaviors is chemotaxis: the ability to move in the direction of a chemical gradient. Due to its importance, key aspects of chemotaxis have been quantified for a variety of cells, including the accuracy, persistence, and speed of cell motion. However, whether these aspects are mutually constrained is poorly understood. Can a cell be accurate but not persistent, or vice versa? Here we use theory, simulations, and experiments on cancer cells to uncover mutual constraints on the properties of chemotaxis. Our results suggest that accuracy and persistence are mutually constrained.
Collapse
Affiliation(s)
- Julien Varennes
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| |
Collapse
|
20
|
Leon-Valdivieso CY, Wedgwood J, Lallana E, Donno R, Roberts I, Ghibaudi M, Tirella A, Tirelli N. Fibroblast migration correlates with matrix softness. A study in knob-hole engineered fibrin. APL Bioeng 2018; 2:036102. [PMID: 31069320 PMCID: PMC6481723 DOI: 10.1063/1.5022841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
The invasion of a matrix by migrating cells is a key step in its remodelling. At least in 2D migration models, cells tend to localize in stiffer areas (durotaxis). Here, we show that mechanical properties affect differently the 3D migration rate: non-proteolytic 3D cell migration is facilitated in softer matrices. In these gels, the modulus was varied by introducing defects in fibres, leaving largely intact the nanostructure. The matrices derive from fibrin via functionalization with a bioinert polymer [poly(ethylene glycol), PEG] through an affinity mechanism identical to that presiding to fibrin own self-assembly. Peptidic end groups on PEG were used to bind fibrinogen globular D regions [GPRP (glycine-proline-arginine-proline) for a holes, GHRP (glycine-histidine-arginine-proline) for b holes; Kd evaluated via isothermal titration calorimetry or fluorescence anisotropy]. In a dose-dependent manner, both PEGylated peptides decreased gel stiffness, but most other properties at a macroscopic [e.g., overall elastic character, strain hardening, and high (>0.5) Poisson ratio] or nano/micro level (fibre dimension and pore size) were largely unaffected, suggesting that the softening effect was due to the introduction of defects within fibres, rather than to differences in the network architecture. In these matrices, the key determinant of fibroblast migration was found to be the elastic modulus, rather than the identity or the dose of the PEGylated peptide; softer materials allowed a faster invasion, even if this meant a higher content of non-adhesive PEG. This does not conflict with fibroblast durotaxis (where stiffness controls accumulation but not necessarily the speed of migration) and indicates a way to fine tune the speed of cell colonization.
Collapse
Affiliation(s)
| | - Jennifer Wedgwood
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Enrique Lallana
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Iwan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|