1
|
Sun Y, Lü J, Zhou Y, Liu Y, Chai Y. Suppression of beta oscillations by delayed feedback in a cortex-basal ganglia-thalamus-pedunculopontine nucleus neural loop model. J Biol Phys 2023; 49:463-482. [PMID: 37572243 PMCID: PMC10651615 DOI: 10.1007/s10867-023-09641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Excessive neural synchronization of neural populations in the beta (β) frequency range (12-35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson's disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on β oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological β oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson's motor symptoms in practical applications.
Collapse
Affiliation(s)
- Yuqin Sun
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Jiali Lü
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Ye Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yingpeng Liu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
2
|
Galvis D, Hodson DJ, Wedgwood KC. Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:fnetp.2023.1170930. [PMID: 36987428 PMCID: PMC7614376 DOI: 10.3389/fnetp.2023.1170930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or network drive, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as network sortedness increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.
Collapse
Affiliation(s)
- Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Correspondence: Daniel Galvis,
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kyle C.A. Wedgwood
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Terrien S, Krauskopf B, Broderick NGR, Pammi VA, Braive R, Sagnes I, Beaudoin G, Pantzas K, Barbay S. Merging and disconnecting resonance tongues in a pulsing excitable microlaser with delayed optical feedback. CHAOS (WOODBURY, N.Y.) 2023; 33:023142. [PMID: 36859235 DOI: 10.1063/5.0124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general phenomenon characterized by an all-or-none response of a system to an external perturbation of a given strength. When subject to delayed feedback, excitable systems can sustain multistable pulsing regimes, which are either regular or irregular time sequences of pulses reappearing every delay time. Here, we investigate an excitable microlaser subject to delayed optical feedback and study the emergence of complex pulsing dynamics, including periodic, quasiperiodic, and irregular pulsing regimes. This work is motivated by experimental observations showing these different types of pulsing dynamics. A suitable mathematical model, written as a system of delay differential equations, is investigated through an in-depth bifurcation analysis. We demonstrate that resonance tongues play a key role in the emergence of complex dynamics, including non-equidistant periodic pulsing solutions and chaotic pulsing. The structure of resonance tongues is shown to depend very sensitively on the pump parameter. Successive saddle transitions of bounding saddle-node bifurcations constitute a merging process that results in unexpectedly large regions of locked dynamics, which subsequently disconnect from the relevant torus bifurcation curve; the existence of such unconnected regions of periodic pulsing is in excellent agreement with experimental observations. As we show, the transition to unconnected resonance regions is due to a general mechanism: the interaction of resonance tongues locally at an extremum of the rotation number on a torus bifurcation curve. We present and illustrate the two generic cases of disconnecting and disappearing resonance tongues. Moreover, we show how a pair of a maximum and a minimum of the rotation number appears naturally when two curves of torus bifurcation undergo a saddle transition (where they connect differently).
Collapse
Affiliation(s)
- Soizic Terrien
- Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France
| | - Bernd Krauskopf
- Department of Mathematics and Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Neil G R Broderick
- Department of Physics and Dodd-Walls Centre for Photonic and Quantum Technologies, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Venkata A Pammi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Rémy Braive
- Université Paris-Saclay, Université Paris Cité, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France and Institut Universitaire de France, Paris, France
| | - Isabelle Sagnes
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Grégoire Beaudoin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Konstantinos Pantzas
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Sylvain Barbay
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| |
Collapse
|
4
|
Laing CR, Krauskopf B. Theta neuron subject to delayed feedback: a prototypical model for self-sustained pulsing. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We consider a single theta neuron with delayed self-feedback in the form of a Dirac delta function in time. Because the dynamics of a theta neuron on its own can be solved explicitly—it is either excitable or shows self-pulsations—we are able to derive algebraic expressions for the existence and stability of the periodic solutions that arise in the presence of feedback. These periodic solutions are characterized by one or more equally spaced pulses per delay interval, and there is an increasing amount of multistability with increasing delay time. We present a complete description of where these self-sustained oscillations can be found in parameter space; in particular, we derive explicit expressions for the loci of their saddle-node bifurcations. We conclude that the theta neuron with delayed self-feedback emerges as a prototypical model: it provides an analytical basis for understanding pulsating dynamics observed in other excitable systems subject to delayed self-coupling.
Collapse
Affiliation(s)
- Carlo R. Laing
- School of Natural and Computational Sciences Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745, New Zealand
| | - Bernd Krauskopf
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|