1
|
Lynch J, Wold ES, Gau J, Sponberg S, Gravish N. Stability and agility trade-offs in spring-wing systems. BIOINSPIRATION & BIOMIMETICS 2024; 20:016024. [PMID: 39569924 DOI: 10.1088/1748-3190/ad9535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Flying insects are thought to achieve energy-efficient flapping flight by storing and releasing elastic energy in their muscles, tendons, and thorax. However, 'spring-wing' flight systems consisting of elastic elements coupled to nonlinear, unsteady aerodynamic forces present possible challenges to generating stable and responsive wing motion. The energetic efficiency from resonance in insect flight is tied to the Weis-Fogh number (N), which is the ratio of peak inertial force to aerodynamic force. In this paper, we present experiments and modeling to study how resonance efficiency (which increases withN) influences the control responsiveness and perturbation resistance of flapping wingbeats. In our first experiments, we provide a step change in the input forcing amplitude to a series-elastic spring-wing system and observe the response time of the wing amplitude increase. In our second experiments we provide an external fluid flow directed at the flapping wing and study the perturbed steady-state wing motion. We evaluate both experiments across Weis-Fogh numbers from1
Collapse
Affiliation(s)
- James Lynch
- Department of Mechanical & Aerospace Engineering, University of California, San Diego, CA, United States of America
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jeff Gau
- Interdisciplinary Bioengineering Graduate Program and George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Nick Gravish
- Department of Mechanical & Aerospace Engineering, University of California, San Diego, CA, United States of America
| |
Collapse
|
2
|
Hsu SJ, Deng H, Wang J, Dong H, Cheng B. Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill. J R Soc Interface 2024; 21:20240076. [PMID: 39016178 PMCID: PMC11253209 DOI: 10.1098/rsif.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.
Collapse
Affiliation(s)
- Shih-Jung Hsu
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA16802, USA
| | - Hankun Deng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA16802, USA
| | - Junshi Wang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA22904, USA
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA22904, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA16802, USA
| |
Collapse
|
3
|
Panta K, Deng H, Zhang Z, Huang D, Panah A, Cheng B. Touchless underwater wall-distance sensing via active proprioception of a robotic flapper. BIOINSPIRATION & BIOMIMETICS 2024; 19:026009. [PMID: 38252966 DOI: 10.1088/1748-3190/ad2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A∗) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2-3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A∗) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.
Collapse
Affiliation(s)
- Kundan Panta
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Hankun Deng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Zhiyu Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Daning Huang
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Azar Panah
- Division of Engineering, Business & Computing (Berks), The Pennsylvania State University, Reading, PA 19610, United States of America
| | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
4
|
Agrawal S, Tobalske BW, Anwar Z, Luo H, Hedrick TL, Cheng B. Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight. Proc Biol Sci 2022; 289:20222076. [PMID: 36475440 PMCID: PMC9727662 DOI: 10.1098/rspb.2022.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation. These may help guide future experimental work and provide insights into the evolution and robotic emulation of hummingbird flight. We develop a functional model of the hummingbird musculoskeletal system, which predicts instantaneous, three-dimensional torque produced by primary (pectoralis and supracoracoideus) and combined secondary muscles. The model also predicts primary muscle contractile behaviour, including stress, strain, elasticity and work. Results suggest that the primary muscles (i.e. the flight 'engine') function as diverse effectors, as they do not simply power the stroke, but also actively deviate and pitch the wing with comparable actuation torque. The results also suggest that the secondary muscles produce controlled-tightening effects by acting against primary muscles in deviation and pitching. The diverse effects of the pectoralis are associated with the evolution of a comparatively enormous bicipital crest on the humerus.
Collapse
Affiliation(s)
- Suyash Agrawal
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Zafar Anwar
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoxiang Luo
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tyson L. Hedrick
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bo Cheng
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Broadley P, Nabawy MRA, Quinn MK, Crowther WJ. Dynamic experimental rigs for investigation of insect wing aerodynamics. J R Soc Interface 2022; 19:20210909. [PMID: 35642428 PMCID: PMC9156915 DOI: 10.1098/rsif.2021.0909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 01/29/2023] Open
Abstract
This paper provides a systematic and critical review of dynamic experimental rigs used for insect wing aerodynamics research. The goal is to facilitate meaningful comparison of data from existing rigs and provide insights for designers of new rigs. The scope extends from simple one degree of freedom rotary rigs to multi degrees of freedom rigs allowing various rotation and translation motions. Experimental methods are characterized using a consistent set of parameters that allows objective comparison of different approaches. A comprehensive catalogue is presented for the tested flow conditions (assessed through Reynolds number, Rossby number and advance ratio), wing morphologies (assessed through aspect ratio, planform shape and thickness to mean chord ratio) and kinematics (assessed through motion degrees of freedom). Links are made between the type of aerodynamic characteristics being studied and the type of experimental set-up used. Rig mechanical design considerations are assessed, and the aerodynamic measurements obtained from these rigs are discussed.
Collapse
Affiliation(s)
- Paul Broadley
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK
| | - Mostafa R. A. Nabawy
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK
- Aerospace Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Mark K. Quinn
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK
| | - William J. Crowther
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M1 3BB, UK
| |
Collapse
|