1
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
2
|
Karwinkel T, Winklhofer M, Allenstein D, Brust V, Christoph P, Holland RA, Hüppop O, Steen J, Bairlein F, Schmaljohann H. A refined magnetic pulse treatment method for magnetic navigation experiments with adequate sham control: a case study on free-flying songbirds. J R Soc Interface 2024; 21:20230745. [PMID: 38745460 PMCID: PMC11285864 DOI: 10.1098/rsif.2023.0745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Michael Winklhofer
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Dario Allenstein
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| | - Vera Brust
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Paula Christoph
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
- Institute of Landscape Ecology, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 2, Münster 48149, Germany
| | - Richard A. Holland
- School of Environmental and Natural Sciences, University of Bangor, Deiniol Road, Bangor LL57 2UW, UK
| | - Ommo Hüppop
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Jan Steen
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- Institute of Landscape Ecology, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 2, Münster 48149, Germany
| | - Franz Bairlein
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research ‘Vogelwarte Helgoland’, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
- School of Mathematics and Science, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, Oldenburg 26129, Germany
| |
Collapse
|
3
|
Eikenaar C, Ostolani A, Brust V, Karwinkel T, Schmaljohann H, Isaksson C. The oxidative balance and stopover departure decisions in a medium- and a long-distance migrant. MOVEMENT ECOLOGY 2023; 11:7. [PMID: 36747277 PMCID: PMC9903453 DOI: 10.1186/s40462-023-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Birds have extremely elevated metabolic rates during migratory endurance flight and consequently can become physiologically exhausted. One feature of exhaustion is oxidative damage, which occurs when the antioxidant defense system is overwhelmed by the production of damaging reactive oxygen species (ROS). Migrating birds have been shown to decrease the amount of oxidative lipid damage during stopovers, relatively stationary periods in between migratory flights. It has therefore been argued that, in addition to accumulating fuel, one of the functions of stopover is to restore the oxidative balance. If this is so, we would expect that migrating birds are unlikely to resume migration from stopover when they still have high amounts of lipid damage. METHODS To test this hypothesis, we measured parameters of the oxidative balance and related these to stopover departure decisions of song thrushes (Turdus philomelos) and northern wheatears (Oenanthe oenanthe), a medium- and long-distance songbird migrant, respectively. We measured malondialdehyde (MDA) concentration, a biomarker for oxidative lipid damage, and total non-enzymatic antioxidant capacity (AOX), an overall biomarker of protection against ROS. Stopover departure decisions were determined using a fully automated telemetry system set-up on our small island study site. RESULTS The decision to resume migration was not related with MDA concentration in either study species, also not when this was corrected for circulating fatty acid concentrations. Similarly, AOX did not affect this decision, also not when corrected for uric-acid concentration. The time within the night when birds departed also was not affected by MDA concentration or AOX. However, confirming earlier observations, we found that in both species, fat individuals were more likely to depart than lean individuals, and fat northern wheatears departed earlier within the night than lean conspecifics. Northern wheatears additionally departed earlier in spring with more southerly winds. CONCLUSIONS We found no support for the idea that stopovers departure decisions are influenced by parameters of the oxidative balance. We discuss possible reasons for this unexpected finding.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany.
| | | | - Vera Brust
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - Thiemo Karwinkel
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | | |
Collapse
|
4
|
Pophof B, Henschenmacher B, Kattnig DR, Kuhne J, Vian A, Ziegelberger G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. HEALTH PHYSICS 2023; 124:39-52. [PMID: 36480584 PMCID: PMC9722389 DOI: 10.1097/hp.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ABSTRACT This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively. Radical pairs and magnetite are discussed mechanisms of magnetoreception in insects, birds, and mammals. Moreover, several insects as well as marine species possess specialized electroreceptors, and behavioral reactions to anthropogenic fields have been reported. Plants react to experimental modifications of their magnetic environment by growth changes. Strong adverse effects of anthropogenic fields have not been described, but knowledge gaps were identified; further studies, aiming at the identification of the interaction mechanisms and the ecological consequences, are recommended.
Collapse
Affiliation(s)
- Blanka Pophof
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Bernd Henschenmacher
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Jens Kuhne
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gunde Ziegelberger
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Prussian blue technique is prone to yield false negative results in magnetoreception research. Sci Rep 2022; 12:8803. [PMID: 35614116 PMCID: PMC9132912 DOI: 10.1038/s41598-022-12398-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
Perls’s Prussian blue staining technique has been used in magnetoreception research to screen tissues for iron-rich structures as proxies for putative magnetoreceptor structures based on magnetic particles. However, seemingly promising structural candidates in the upper beak of birds detected with Prussian blue turned out to be either irreproducible or located in non-neuronal cells, which has spurred a controversy that has not been settled yet. Here we identify possible pitfalls in the previous works and apply the Prussian blue technique to tissues implicated in magnetic-particle-based magnetoreception, in an effort to reassess its suitability for staining single-domain magnetite, i.e., the proposed magnetic substrate for the interaction with the external magnetic field. In the upper beak of night-migratory songbirds, we found staining products in great numbers, but not remotely associated with fiber terminals of the traced ophthalmic branch of the trigeminal nerve. Surprisingly, staining products were absent from the lamina propria in the olfactory rosette of rainbow trout where candidate magnetoreceptor structures were identified with different techniques earlier. Critically, magnetosome chains in whole cells of magnetotactic bacteria remained unstained. The failure to label single-domain magnetite in positive control samples is a serious limitation of the technique and suggests that two most influential but antipodal studies conducted previously stood little chances of obtaining correct positive results under the assumption that magnetosome-like particles were present in the tissues. Nonetheless, the staining technique appears suitable to identify tissue contamination with iron-rich fine dust trapped in epithelia already in vivo.
Collapse
|