1
|
Eom W, Hossain MT, Parasramka V, Kim J, Siu RWY, Sanders KA, Piorkowski D, Lowe A, Koh HG, De Volder MFL, Fudge DS, Ewoldt RH, Tawfick SH. Fast 3D printing of fine, continuous, and soft fibers via embedded solvent exchange. Nat Commun 2025; 16:842. [PMID: 39833187 PMCID: PMC11746892 DOI: 10.1038/s41467-025-55972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa. This is achieved via 3D printing by rapid solvent exchange in high yield stress micro granular gel, leading to radial solidification of the extruded polymer filament at a rate of 2.33 μm/s. This process extrudes filaments at 5 mm/s, which is 500,000 times faster than meniscus printing owing to the rapid solidification which prevents capillarity-induced fiber breakage. This study demonstrates the potential of 3D printing by rapid solvent exchange as a fast and scalable process for replicating natural fibrous structures for use in biomimetic functions.
Collapse
Affiliation(s)
- Wonsik Eom
- Department of Fiber Convergence Material Engineering, Dankook University, Yongin-si, Republic of Korea
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mohammad Tanver Hossain
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vidush Parasramka
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jeongmin Kim
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ryan W Y Siu
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kate A Sanders
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Dakota Piorkowski
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Andrew Lowe
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | | | - Douglas S Fudge
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sameh H Tawfick
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Pogoda K, Janmey PA. Transmit and protect: The mechanical functions of intermediate filaments. Curr Opin Cell Biol 2023; 85:102281. [PMID: 37984009 PMCID: PMC10753931 DOI: 10.1016/j.ceb.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
New aspects of the unique mechanical properties of intermediate filaments (IFs) continue to emerge from studies that illuminate the structure and mechanical response of single filaments, the interaction of intermediate filaments with each other or with other cytoskeletal elements, and the viscoelasticity of the networks that these intermediate filaments form. The relation of purified IF network mechanics to the role of IFs in cells and tissues is a particularly active area, with several new demonstrations of the unique and essential role that intermediate filament networks play in determining the mechanical response of biological materials, especially to large deformations, and the mechanisms by which intermediate filaments protect the nucleus from mechanical stresses that cells and tissues encounter in vivo.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31-342, Poland
| | - Paul A Janmey
- Institute for Medicine and Engineering, Center for Engineering Mechanobiology, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
3
|
Krings W, Gorb SN. Particle binding capacity of snail saliva. J Chem Phys 2023; 159:185101. [PMID: 37955324 DOI: 10.1063/5.0176668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Gastropods forage with their radula, a thin chitinous membrane with embedded teeth, which scratch across the substrate to lose food particles. During this interaction, the risk of loosening particles is obvious without having a specialized mechanism holding them on the tooth surface. As mucus secretions are essential in molluscan life cycles and the locomotion and attachment gels are known to have an instant high adhesion, we have hypothesized that the saliva could support particle retention during feeding. As adhesion of snail saliva was not studied before, we present here an experimental setup to test its particle-binding capacity using a large land snail (Lissachatina fulica, Stylommatophora, Heterobranchia). This experiment was also applied to the gels produced by the snail foot for comparison and can be potentially applied to various fluids present at a small volume in the future. We found, that the saliva has high particle retention capacity that is comparable to the foot glue of the snail. To gain some insight into the properties of the saliva, we additionally studied it in the scanning electron microscope, estimated its viscosity in a de-wetting experiment, and investigated its elemental composition using energy dispersive X-ray spectroscopy reveling higher contents of Ca, Zn and other potential cross-linkers similar to those found in the glue.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Taylor L, Chaudhary G, Jain G, Lowe A, Hupe A, Negishi A, Zeng Y, Ewoldt RH, Fudge DS. Mechanisms of gill-clogging by hagfish slime. J R Soc Interface 2023; 20:20220774. [PMID: 36987615 PMCID: PMC10050918 DOI: 10.1098/rsif.2022.0774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Hagfishes defend themselves from gill-breathing predators by producing large volumes of fibrous slime when attacked. The slime's effectiveness comes from its ability to clog predators' gills, but the mechanisms by which hagfish slime clogs are uncertain, especially given its remarkably dilute concentration of solids. We quantified the clogging performance of hagfish slime over a range of concentrations, measured the contributions of its mucous and thread components, and measured the effect of turbulent mixing on clogging. To assess the porous structure of hagfish slime, we used a custom device to measure its Darcy permeability. We show that hagfish slime clogs at extremely dilute concentrations like those found in native hagfish slime and displays clogging performance that is superior to three thickening agents. We report an extremely low Darcy permeability for hagfish slime, and an effective pore size of 10-300 nm. We also show that the mucous and thread components play distinct yet crucial roles, with mucus being responsible for effective clogging and low permeability and the threads imparting mechanical strength and retaining clogging function over time. Our results provide new insights into the mechanisms by which hagfish slime clogs gills and may inspire the development of ultra-soft materials with novel properties.
Collapse
Affiliation(s)
- Luke Taylor
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gaurav Chaudhary
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andrew Lowe
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andre Hupe
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Atsuko Negishi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Yu Zeng
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Randy H. Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| |
Collapse
|