1
|
Li L, Gao L, Yap KK, Phinikaridou A, Masen M. Characterization of mouse artery tissue properties using experimental testing combined with finite element modelling. J Mech Behav Biomed Mater 2025; 166:106953. [PMID: 40020567 DOI: 10.1016/j.jmbbm.2025.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
Indentation tests have been widely used to determine the material properties of arterial tissue. However, it remains a challenge to extract the relevant material parameters from the force-indentation curves that result from indentation tests. This paper presents a detailed procedure for determining the first-order Ogden parameters, μ and α, for mouse arterial tissue using a method that combines indentation tests with numerical simulations. The method builds on a previous study (Li and Masen, 2024) and has been expanded to account for the surface roughness of the indented specimen. It is assumed that hyperelastic material behaviour can be linearized for small strain increments, ɛji≤ 1%, allowing the model developed by Hayes (Hayes et al., 1972) to be applied to accommodate the contact behaviour in each increment. However, mouse arterial specimens have an irregular or rough surface which complicates the use of Hayes' model, as the thickness of the specimen is an input parameter into the model. To solve this, we introduce an 'equivalent thickness' that can be applied in Hayes' model by identifying the thickness that yields the smallest variance S2 of the shear moduli among a range of possible specimen thickness values. The shear moduli obtained for the equivalent thickness, denoted as the equivalent shear moduli Gi∗, along with the corresponding principal strains ɛj obtained from simulations, were used to calculate the principal stresses σj using Hooke's law. By combining the principal stresses σj across all increments, a nonlinear stress σj versus strain ɛj curve was generated, from which the first-order Ogden parameters μ and α were obtained. The proposed method is demonstrated by applying it to simulated force-indentation curves, successfully recovering the input parameters for both thickness and Ogden parameters. The method was subsequently applied to 26 experimentally obtained curves, yielding an average shear modulus G of 1.22 kPa for the indented mouse arterial tissue specimens, with values ranging from 0.27 to 5.02 kPa. Numerical simulations of the indentation process with the obtained values were used to verify the obtained material parameters.
Collapse
Affiliation(s)
- Luli Li
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Ling Gao
- School of Biomedical Engineering and Imaging Science, King's College London, London, SE1 7EH, UK
| | - Kian Kun Yap
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Science, King's College London, London, SE1 7EH, UK; British Heart Foundation Centre of Research Excellence, King's College London, London SE5 9NU, UK
| | - Marc Masen
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Mastoor Y, Karimi M, Sun M, Ahadi F, Mathieu P, Fan M, Han L, Han LH, Clyne AM. Vascular smooth muscle cells can be circumferentially aligned inside a channel using tunable gelatin microribbons. Biofabrication 2024; 17:015011. [PMID: 39423834 PMCID: PMC11583946 DOI: 10.1088/1758-5090/ad88a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
The gold standard to measure arterial health is vasodilation in response to nitric oxide. Vasodilation is generally measured via pressure myography of arteries isolated from animal models. However, animal arteries can be difficult to obtain and may have limited relevance to human physiology. It is, therefore, critical to engineer human cell-based arterial models capable of contraction. Vascular smooth muscle cells (SMCs) must be circumferentially aligned around the vessel lumen to contract the vessel, which is challenging to achieve in a soft blood vessel model. In this study, we used gelatin microribbons to circumferentially align SMCs inside a hydrogel channel. To accomplish this, we created tunable gelatin microribbons of varying stiffnesses and thicknesses and assessed how SMCs aligned along them. We then wrapped soft, thick microribbons around a needle and encapsulated them in a gelatin methacryloyl hydrogel, forming a microribbon-lined channel. Finally, we seeded SMCs inside the channel and showed that they adhered best to fibronectin and circumferentially aligned in response to the microribbons. Together, these data show that tunable gelatin microribbons can be used to circumferentially align SMCs inside a channel. This technique can be used to create a human artery-on-a-chip to assess vasodilation via pressure myography, as well as to align other cell types for 3Din vitromodels.
Collapse
Affiliation(s)
- Yusuf Mastoor
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Mahsa Karimi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Michael Sun
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Fereshteh Ahadi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Pattie Mathieu
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| | - Mingyue Fan
- School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104, United States of America
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, United States of America
| |
Collapse
|
3
|
Savvopoulos F, Keeling MC, Carassiti D, Fogell NA, Patel MB, Naser J, Gavara N, de Silva R, Krams R. Assessment of the nano-mechanical properties of healthy and atherosclerotic coronary arteries by atomic force microscopy. J R Soc Interface 2024; 21:20230674. [PMID: 38320600 PMCID: PMC10846958 DOI: 10.1098/rsif.2023.0674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Nano-indentation techniques might be better equipped to assess the heterogeneous material properties of plaques than macroscopic methods but there are no bespoke protocols for this kind of material testing for coronary arteries. Therefore, we developed a measurement protocol to extract mechanical properties from healthy and atherosclerotic coronary artery tissue sections. Young's modulus was derived from force-indentation data. Metrics of collagen fibre density were extracted from the same tissue, and the local material properties were co-registered to the local collagen microstructure with a robust framework. The locations of the indentation were retrospectively classified by histological category (healthy, plaque, lipid-rich, fibrous cap) according to Picrosirius Red stain and adjacent Hematoxylin & Eosin and Oil-Red-O stains. Plaque tissue was softer (p < 0.001) than the healthy coronary wall. Areas rich in collagen within the plaque (fibrous cap) were significantly (p < 0.001) stiffer than areas poor in collagen/lipid-rich, but less than half as stiff as the healthy coronary media. Young's moduli correlated (Pearson's ρ = 0.53, p < 0.05) with collagen content. Atomic force microscopy (AFM) is capable of detecting tissue stiffness changes related to collagen density in healthy and diseased cardiovascular tissue. Mechanical characterization of atherosclerotic plaques with nano-indentation techniques could refine constitutive models for computational modelling.
Collapse
Affiliation(s)
- Fotios Savvopoulos
- Department of Bioengineering, Imperial College London, London SW3 6LR, UK
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Michael C. Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Nicholas A. Fogell
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Miten B. Patel
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Jarka Naser
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Unit of Biophysics and Bioengineering, Medical School, University of Barcelona, Barcelona 08007, Spain
| | - Ranil de Silva
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London SW3 6LR, UK
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|