1
|
Hembrom R, Ünnep R, Sárvári É, Nagy G, Solymosi K. Dynamic in vivo monitoring of granum structural changes of Ctenanthe setosa (Roscoe) Eichler during drought stress and subsequent recovery. PHYSIOLOGIA PLANTARUM 2025; 177:e14621. [PMID: 39844527 PMCID: PMC11754942 DOI: 10.1111/ppl.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 01/24/2025]
Abstract
Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery. Upon drought stress, no significant changes occurred in the chloroplast ultrastructure, chlorophyll content, 77K fluorescence emission spectra and maximal quantum efficiency of PSII (Qy dark), but the actual quantum efficiency of PSII (Qy light) decreased, the amounts of PSI-LHCII complexes and PSII monomers declined, and that of PSII supercomplexes increased. Thickness of the leaf and of the adaxial hypodermis, chloroplast length and granum repeat distance (RD) values decreased upon drought stress, as shown by light microscopy and SANS, respectively. Because of the very slight (nm-range) changes in RD values, the large biological variability (significant differences in RD values among the leaves and studied leaf regions) and the invasive sampling required for this method, transmission electron microscopy (TEM) hardly showed significant differences. On the other side, in situ SANS analyses provided a unique insight in vivo into the fast structural recovery of the granum structure of drought-stressed leaves, which happened already 18 h after re-watering, while functional and biochemical recovery took place on a longer time scale.
Collapse
Affiliation(s)
- Richard Hembrom
- Department of Plant AnatomyInstitute of Biology, Faculty of Science, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Renáta Ünnep
- Neutron Spectroscopy DepartmentHUN‐REN Centre for Energy ResearchBudapestHungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant BiologyInstitute of Biology, Faculty of Science, ELTE Eötvös Loránd UniversityBudapestHungary
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Katalin Solymosi
- Department of Plant AnatomyInstitute of Biology, Faculty of Science, ELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Lambrev P, Janda T. Editorial. PHOTOSYNTHETICA 2023; 61:398-404. [PMID: 39649483 PMCID: PMC11586841 DOI: 10.32615/ps.2023.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/10/2024]
Affiliation(s)
- P.H. Lambrev
- HUN-REN Biological Research Center, Institute of Plant Biology, Temesvári körút 62, H-6726 Szeged, Hungary
| | - T. Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2., H-2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Martel A, Gabel F. Time-resolved small-angle neutron scattering (TR-SANS) for structural biology of dynamic systems: Principles, recent developments, and practical guidelines. Methods Enzymol 2022; 677:263-290. [DOI: 10.1016/bs.mie.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Kanna SD, Domonkos I, Kóbori TO, Dergez Á, Böde K, Nagyapáti S, Zsiros O, Ünnep R, Nagy G, Garab G, Szilák L, Solymosi K, Kovács L, Ughy B. Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in Euglena gracilis Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:725699. [PMID: 34868111 PMCID: PMC8636990 DOI: 10.3389/fpls.2021.725699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.
Collapse
Affiliation(s)
- Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tímea Ottília Kóbori
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Ágnes Dergez
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Szeged, Hungary
| | - Kinga Böde
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Sarolta Nagyapáti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Renáta Ünnep
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gergely Nagy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Eötvös Loránd Research Network, Budapest, Hungary
- European Spallation Source ESS ERIC, Lund, Sweden
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Villigen, Switzerland
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gyözö Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
6
|
Ounoki R, Ágh F, Hembrom R, Ünnep R, Szögi-Tatár B, Böszörményi A, Solymosi K. Salt Stress Affects Plastid Ultrastructure and Photosynthetic Activity but Not the Essential Oil Composition in Spearmint ( Mentha spicata L. var. crispa "Moroccan"). FRONTIERS IN PLANT SCIENCE 2021; 12:739467. [PMID: 34777420 PMCID: PMC8586547 DOI: 10.3389/fpls.2021.739467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
High levels of soil salinity affect plant growth, reproduction, water and ion uptake, and plant metabolism in a complex manner. In this work, the effect of salt stress on vegetative growth, photosynthetic activity, and chloroplast ultrastructure of spearmint (Mentha spicata L. var. crispa "Moroccan") was investigated. After 2 weeks of low concentration treatments (5, 25, and 50 mM NaCl) of freshly cut shoots, we observed that the stem-derived adventitious root formation, which is a major mean for vegetative reproduction among mints, was completely inhibited at 50 mM NaCl concentration. One-week-long, high concentration (150 mM NaCl) salt stress, and isosmotic polyethylene glycol (PEG) 6000 treatments were compared in intact (rooted) plants and freshly cut, i.e., rootless shoots. Our data showed that roots have an important role in mitigating the deleterious effects of both the osmotic (PEG treatment) and specific ionic components of high salinity stress. At 50 mM NaCl or above, the ionic component of salt stress caused strong and irreversible physiological alterations. The effects include a decrease in relative water content, the maximal and actual quantum efficiency of photosystem II, relative chlorophyll content, as well as disorganization of the native chlorophyll-protein complexes as revealed by 77 K fluorescence spectroscopy. In addition, important ultrastructural damage was observed by transmission electron microscopy such as the swelling of the thylakoid lumen at 50 mM NaCl treatment. Interestingly, in almost fully dry leaf regions and leaves, granum structure was relatively well retained, however, their disorganization occurred in leaf chloroplasts of rooted spearmint treated with 150 mM NaCl. This loss of granum regularity was also confirmed in the leaves of these plants using small-angle neutron scattering measurements of intact leaves of 150 mM NaCl-stressed rooted plants. At the same time, solid-phase microextraction of spearmint leaves followed by gas chromatography and mass spectrometry (GC/MS) analyses revealed that the essential oil composition of spearmint was unaffected by the treatments applied in this work. Taken together, the used spearmint cultivar tolerates low salinity levels. However, at 50 mM NaCl concentration and above, the ionic components of the stress strongly inhibit adventitious root formation and thus their clonal propagation, and severely damage the photosynthetic apparatus.
Collapse
Affiliation(s)
- Roumaissa Ounoki
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Ágh
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Richard Hembrom
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renáta Ünnep
- Neutron Spectroscopy Department, Center for Energy Research, Budapest, Hungary
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Mazur R, Mostowska A, Kowalewska Ł. How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2021; 12:756009. [PMID: 34691132 PMCID: PMC8527009 DOI: 10.3389/fpls.2021.756009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 06/11/2023]
Abstract
Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Jakubauskas D, Mortensen K, Jensen PE, Kirkensgaard JJK. Small-Angle X-Ray and Neutron Scattering on Photosynthetic Membranes. Front Chem 2021; 9:631370. [PMID: 33954157 PMCID: PMC8090863 DOI: 10.3389/fchem.2021.631370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/01/2021] [Indexed: 11/26/2022] Open
Abstract
Ultrastructural membrane arrangements in living cells and their dynamic remodeling in response to environmental changes remain an area of active research but are also subject to large uncertainty. The use of noninvasive methods such as X-ray and neutron scattering provides an attractive complimentary source of information to direct imaging because in vivo systems can be probed in near-natural conditions. However, without solid underlying structural modeling to properly interpret the indirect information extracted, scattering provides at best qualitative information and at worst direct misinterpretations. Here we review the current state of small-angle scattering applied to photosynthetic membrane systems with particular focus on data interpretation and modeling.
Collapse
Affiliation(s)
- Dainius Jakubauskas
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kell Mortensen
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob J. K. Kirkensgaard
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Li Z, Juneau P, Lian Y, Zhang W, Wang S, Wang C, Shu L, Yan Q, He Z, Xu K. Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. PLANTS 2020; 9:plants9121748. [PMID: 33321890 PMCID: PMC7763043 DOI: 10.3390/plants9121748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023]
Abstract
The effects of the photocatalytic toxicity of titanium dioxide nanoparticle (nano-TiO2) on phytoplankton are well understood. However, as UV light intensity decreases sharply with the depth of the water column, the effects of nano-TiO2 itself on deeper water phytoplankton, such as green algae, need further research. In this research, we investigated the effects of three sizes of TiO2 (10, 50 and 200 nm) on the photosynthetic and antioxidative processes of Scenedesmus obliquus in the absence of UV light. We found that 50 nm and 10 nm TiO2 (10 mg/L) inhibited growth rates and the maximal photosystem II quantum yield compared to the control in Scenedesmus obliquus. The minimal and maximal fluorescence yields, and the contents of reactive oxygen species and lipid peroxidation, increased, indicating that photosynthetic energy/electrons transferred to oxygen and induced oxidative stress in nano-TiO2-treated samples. In addition, we found that aggregations of algae and 10 nm TiO2 were present, which could induce cell membrane disruption, and vacuoles were induced to cope with nano-TiO2 stress in Scenedesmus obliquus. These results enhance our understanding of the effects of nano-TiO2 on the photosynthetic and antioxidative processes of green algae, and provide basic information for evaluating the ecotoxicity of nano-TiO2 in freshwater ecosystems.
Collapse
Affiliation(s)
- Zhou Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada;
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Wei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
- Correspondence: (Z.H.); (K.X.)
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, Guangdong, China; (Z.L.); (Y.L.); (W.Z.); (S.W.); (C.W.); (L.S.); (Q.Y.)
- Correspondence: (Z.H.); (K.X.)
| |
Collapse
|