1
|
Madaj R, Martinez-Goikoetxea M, Kaminski K, Ludwiczak J, Dunin-Horkawicz S. Applicability of AlphaFold2 in the modeling of dimeric, trimeric, and tetrameric coiled-coil domains. Protein Sci 2025; 34:e5244. [PMID: 39688306 DOI: 10.1002/pro.5244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Coiled coils are a common protein structural motif involved in cellular functions ranging from mediating protein-protein interactions to facilitating processes such as signal transduction or regulation of gene expression. They are formed by two or more alpha helices that wind around a central axis to form a buried hydrophobic core. Various forms of coiled-coil bundles have been reported, each characterized by the number, orientation, and degree of winding of the constituent helices. This variability is underpinned by short sequence repeats that form coiled coils and whose properties determine both their overall topology and the local geometry of the hydrophobic core. The strikingly repetitive sequence has enabled the development of accurate sequence-based coiled-coil prediction methods; however, the modeling of coiled-coil domains remains a challenging task. In this work, we evaluated the accuracy of AlphaFold2 in modeling coiled-coil domains, both in modeling local geometry and in predicting global topological properties. Furthermore, we show that the prediction of the oligomeric state of coiled-coil bundles can be achieved by using the internal representations of AlphaFold2, with a performance better than any previous state-of-the-art method (code available at https://github.com/labstructbioinf/dc2_oligo).
Collapse
Affiliation(s)
- Rafal Madaj
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Kamil Kaminski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Ludwiczak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
4
|
Sasaki YC. Diffracted X-ray Tracking for Observing the Internal Motions of Individual Protein Molecules and Its Extended Methodologies. Int J Mol Sci 2023; 24:14829. [PMID: 37834277 PMCID: PMC10573657 DOI: 10.3390/ijms241914829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in the visible range, DXT uses a labeling method and a pink beam to closely track the diffraction pattern emitted from the labeled gold nanocrystals. Moreover, by utilizing X-rays with extremely short wavelengths, DXT has achieved unparalleled accuracy and sensitivity, exceeding initial expectations. As a result, this remarkable advance has facilitated the search for internal dynamics within many protein molecules. DXT has recently achieved remarkable success in elucidating the internal dynamics of membrane proteins in living cell membranes. This breakthrough has not only expanded our knowledge of these important biomolecules but also has immense potential to advance our understanding of cellular processes in their native environment.
Collapse
Affiliation(s)
- Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan;
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho 679-5198, Japan
| |
Collapse
|
5
|
Oda M. Analysis of the Structural Dynamics of Proteins in the Ligand-Unbound and -Bound States by Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:13717. [PMID: 37762021 PMCID: PMC10531450 DOI: 10.3390/ijms241813717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One attractive method for obtaining an accurate view of proteins in solution, which is required for applications such as the rational design of proteins and structure-based drug design, is diffracted X-ray tracking (DXT). DXT can detect the protein structural dynamics on a timeline via gold nanocrystals attached to the protein. Here, the structure dynamics of single-chain Fv antibodies, helix bundle-forming de novo designed proteins, and DNA-binding proteins in both ligand-unbound and ligand-bound states were analyzed using the DXT method. The resultant mean square angular displacements (MSD) curves in both the tilting and twisting directions clearly demonstrated that structural fluctuations were suppressed upon ligand binding, and the binding energies determined using the angular diffusion coefficients from the MSD agreed well with the binding thermodynamics determined using isothermal titration calorimetry. In addition, the size of gold nanocrystals is discussed, which is one of the technical concerns of DXT.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
6
|
Ando T. Functional Implications of Dynamic Structures of Intrinsically Disordered Proteins Revealed by High-Speed AFM Imaging. Biomolecules 2022; 12:biom12121876. [PMID: 36551304 PMCID: PMC9776203 DOI: 10.3390/biom12121876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
The unique functions of intrinsically disordered proteins (IDPs) depend on their dynamic protean structure that often eludes analysis. High-speed atomic force microscopy (HS-AFM) can conduct this difficult analysis by directly visualizing individual IDP molecules in dynamic motion at sub-molecular resolution. After brief descriptions of the microscopy technique, this review first shows that the intermittent tip-sample contact does not alter the dynamic structure of IDPs and then describes how the number of amino acids contained in a fully disordered region can be estimated from its HS-AFM images. Next, the functional relevance of a dumbbell-like structure that has often been observed on IDPs is discussed. Finally, the dynamic structural information of two measles virus IDPs acquired from their HS-AFM and NMR analyses is described together with its functional implications.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|