1
|
Chen Y, Wu Y, Dong J, Zhang C, Tang J. Acacetin Attenuates Cigarette Smoke Extract-Induced Human Bronchial Epithelial Cell Injury by Activating NRF2/SLC7A11/GPX4 Signaling to Inhibit Ferroptosis. Cell Biochem Biophys 2025:10.1007/s12013-024-01659-1. [PMID: 39751740 DOI: 10.1007/s12013-024-01659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as a major contributor to mortality worldwide, with cigarette smoke being a primary causative factor. Acacetin has been reported to possess lung protective effects. However, the precise role and mechanism of Acacetin in COPD remains elusive. In this study, human bronchial epithelial cell line HBE135-E6E7 was treated with Acacetin under cigarette smoke extract (CSE) conditions. Cellular viability was assessed using CCK-8 and LDH kits. Reactive oxygen species (ROS) generation was tested with DCFH-DA staining. JC-1 staining was employed to examine the mitochondrial membrane potential (MMP). Additionally, hydroxynonenal (4-HNE) level was tested using immunofluorescence staining and mitochondrial lipid peroxidation was evaluated using MitoPeDPP staining. MitoSOX staining was used to detect mitochondrial (mito)-ROS. Fe2+ level was measured using FerroOrange staining and the expression of ferroptosis-related proteins was detected with western blot. Besides, the binding between Acacetin and NRF2 was analyzed by molecular docking. The sequent NRF2 overexpression or knockdown was used to explore the regulation of Acacetin on NRF2/SLC7A11/GPX4 signaling. Results indicated that CSE significantly reduced the viability, augmented ROS generation and decreased MMP in HBE135-E6E7 cells, which were blocked by Acacetin addition. Moreover, Acacetin inhibited lipid peroxidation and ferroptosis in CSE-treated HBE135-E6E7 cells. Specifically, Acacetin targeted NRF2 and activated the NRF2/SLC7A11/GPX4 signaling in CSE-induced HBE135-E6E7 cells. Furthermore, NRF2 deficiency or ML-385 treatment notably restored the influences of Acacetin on oxidative stress and ferroptosis in HBE135-E6E7 cells challenged with CSE. In conclusion, Acacetin alleviated CSE-induced injury in HBE135-E6E7 cells by activating The NRF2/SLC7A11/GPX4 signaling to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yongchang Chen
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Yan Wu
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Juan Dong
- Department of Traditional Chinese Medicine Culture Publicity, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Chuanming Zhang
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Jia Tang
- Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
2
|
Vinci P, Fiotti N, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Pirulli A, Altamura N, Schincariol P, Di Girolamo FG, Biolo G. Epidemiology of atherosclerotic cardiovascular disease in polygenic hypercholesterolemia with or without high lipoprotein(a) levels. Front Cardiovasc Med 2024; 10:1272288. [PMID: 38322275 PMCID: PMC10845343 DOI: 10.3389/fcvm.2023.1272288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
Background and aims Epidemiology of atherosclerotic cardiovascular disease might be different in patients with polygenic hypercholesterolemia plus high levels (≥30 mg/dl) of Lp(a) (H-Lpa) than in those with polygenic hypercholesterolemia alone (H-LDL). We compared the incidence of peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CVD) in patients with H-Lpa and in those with H-LDL. Methods Retrospective analysis of demographics, risk factors, vascular events, therapy, and lipid profile in outpatient clinical data. Inclusion criteria was adult age, diagnosis of polygenic hypercholesterolemia, and both indication and availability for Lp(a) measurement. Results Medical records of 258 patients with H-Lpa and 290 H-LDL were reviewed for occurrence of vascular events. The median duration of follow-up was 10 years (IQR 3-16). In spite of a similar reduction of LDL cholesterol, vascular events occurred more frequently, and approximately 7 years earlier (P = 0.024) in patients with H-Lpa than in H-LDL (HR 1.96 1.21-3.17, P = 0.006). The difference was around 10 years for acute events (TIA, Stroke, acute coronary events) and one year for chronic ones (P = 0.023 and 0.525, respectively). Occurrence of acute CAD was higher in H-Lpa men (HR 3.1, 95% CI 1.2-7.9, P = 0.007) while, among women, PAD was observed exclusively in H-Lpa subjects with smoking habits (P = 0.009). Conclusions Patients with high Lp(a) levels suffer from a larger and earlier burden of the disease compared to those with polygenic hypercholesterolemia alone. These patients are at higher risk of CAD if they are men, and of PAD if they are women.
Collapse
Affiliation(s)
- Pierandrea Vinci
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Nicola Fiotti
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Emiliano Panizon
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Letizia Maria Tosoni
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Carla Cerrato
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Federica Pellicori
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Alessia Pirulli
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Nicola Altamura
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Paolo Schincariol
- Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
- Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianni Biolo
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| |
Collapse
|
3
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|