1
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024; 68:321-336. [PMID: 38994736 PMCID: PMC12055038 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Li Y, Zhang Q, Yang J, He W, Jiang Y, Chen Y, Wang Y. Metformin combined with glucose starvation synergistically suppress triple-negative breast cancer by enhanced unfolded protein response. Biochem Biophys Res Commun 2023; 675:146-154. [PMID: 37473529 DOI: 10.1016/j.bbrc.2023.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Metformin (MET) is a well-documented drug used in the treatment of type II diabetes. Recent studies have revealed its potential anti-tumor effects in various types of cancer. However, the dosage of MET required to exhibit anti-tumor activity is considerably higher than the clinically recommended dosage. In this study, we investigated the synergistical anti-tumor effect of glucose deprivation and MET in MDA-MB-231 cells, which represents a triple-negative breast cancer subtype (TNBC). Our findings demonstrate that glucose deprivation significantly enhances the anti-tumor activity of MET by reducing cell proliferation and increasing cell apoptosis. RNA-seq was performed to identify the key molecules involved in this process. Our results indicate that unfolded protein response of endoplasmic reticulum (UPRER) was significantly activated upon glucose starvation combining with MET compared to glucose starvation alone. Notably, the combined treatment significantly activated UPRER signaling pathway through ATF4/ATF3/CHOP axis, due to enhanced UPRER stress. In conclusion, our study suggests that the synergistic effects of MET and glucose deprivation suppress cell proliferation in TNBC by activating pro-apoptotic molecules through UPRER stress. These findings have potential implications for the anti-tumor application of MET in TNBC.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China; Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, PR China
| | - Qingqian Zhang
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, Hangzhou, PR China
| | - Weiping He
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Yulan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Yu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, PR China
| | - Yifan Wang
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, PR China; Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, PR China.
| |
Collapse
|
3
|
Morrison KR, Wang T, Chan KY, Trotter EW, Gillespie A, Michael MZ, Oakhill JS, Hagan IM, Petersen J. Elevated basal AMP-activated protein kinase activity sensitizes colorectal cancer cells to growth inhibition by metformin. Open Biol 2023; 13:230021. [PMID: 37042113 PMCID: PMC10090877 DOI: 10.1098/rsob.230021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.
Collapse
Affiliation(s)
- Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Kuan Yoow Chan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Eleanor W. Trotter
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ari Gillespie
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Dept. Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, SouthAustralia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|