1
|
Devi R, Arora P, Verma B, Hussain S, Chowdhary F, Tabssum R, Gupta S. ABCB transporters: functionality extends to more than auxin transportation. PLANTA 2025; 261:93. [PMID: 40100293 DOI: 10.1007/s00425-025-04662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
MAIN CONCLUSION ABCs transport diverse compounds; with plant's most abundant ABCG and ABCB subfamilies. ABCBs are multi-functional transporter proteins having role in plant adaptation. ATP-binding cassette (ABC) proteins have been known for the transportation of various structurally diverse compounds in all kingdoms of life. Plants possess a particularly high number of ABC transporters compared to other eukaryotes: the most abundant being ABCG followed by the ABCB subfamilies. While members of the ABCB subfamily are primarily known for auxin transportation, however, studies have shown their involvement in variety of other functions viz. growth and development, biotic and abiotic stresses, metal toxicity and homeostasis, cellular redox state stability, stomatal regulation, cell shape maintenance, and transport of secondary metabolites and phytohormones. These proteins are able to perform various biological processes due to their widespread localization in the plasma membrane, mitochondrial membrane, chloroplast, and tonoplast facilitating membrane transport influenced by various environmental and biological cues. The current review compiles published insights into the role of ABCB transporters, and also provides brief insights into the role of ABCB transporters in a medicinal plant, where the synthesis of its bioactive secondary metabolite is linked to the primary function of ABCBs, i.e., auxin transport. The review discusses ABCB subfamily members as multi-functional protein and comprehensively examines their role in various biological processes that help plants to survive under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Bhawna Verma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubeena Tabssum
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Kim J, Kim HJ, Choi E, Park JJ, Cho M, Choi S, Kim H, Lee JS, Park H. Genome-wide identification of Tegillarca granosa ATP-binding cassette (ABC) transporter family related to arsenic toxicity. Genomics 2025; 117:111024. [PMID: 40015574 DOI: 10.1016/j.ygeno.2025.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Arsenic is a widespread environmental contaminant recognized for its high mobility and potential toxicity. Arsenic levels at Suncheon Bay, one of the primary Tegillarca granosa culturation sites in South Korea, were identified as higher than the habitat's threshold effect level (TEL). After 12 and 48 h of arsenic exposure, a total of 939 and 842 DEGs were identified in the gill and mantle, respectively. Detoxification genes were identified based on DEG analysis, and out of 10 ABCA3 genes in T. granosa, seven ABCA3 genes in total were up- and/or downregulated in two tissues. The metabolic and the cell adhesion molecules KEGG pathways were the most enriched among the commonly identified up- and downregulated genes. The 'metabolic process' gene ontology term was highly enriched with upregulated DEGs. We then identified 74 ATP-binding cassette (ABC) genes in the T. granosa genome, which has seven subfamilies (A to G), with gene expansion found in the ABCC and ABCA subfamilies. Although the precise mechanisms of arsenic-induced gene dysregulation remain unknown, our findings suggest that ABCA3 genes might participate in arsenic active transport and play an important role in arsenic detoxification.
Collapse
Affiliation(s)
- Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Jun Park
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Republic of Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyejin Kim
- Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science, Haenam 59002, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Zhang T, Fu J, Li C, Gong R, Al-Rasheid KAS, Stover NA, Shao C, Cheng T. Novel findings on the mitochondria in ciliates, with description of mitochondrial genomes of six representatives. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:79-95. [PMID: 40027321 PMCID: PMC11871222 DOI: 10.1007/s42995-024-00249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/03/2024] [Indexed: 03/05/2025]
Abstract
Determining and comparing mitochondrial genomes (mitogenomes) are essential for assessing the diversity and evolution of mitochondria. Ciliates are ancient and diverse unicellular eukaryotes, and thus are ideal models for elucidating the early evolution of mitochondria. Here, we report on six new mitogenomes of spirotrichs, a dominant ciliate group, and perform comparative analyses on 12 representative species. We show that: (1) the mitogenomes of spirotrichs are linear structures with high A+T contents (61.12-81.16%), bidirectional transcription, and extensive synteny (except for the nad5, ccmf and cob genes in Euplotia); (2) the non-split of NADH dehydrogenase subunit 2 gene (nad2) is a plesiomorphy of ciliates, whereas it has evolved into a split gene in Spirotrichea (apart from Euplotes taxa), Oligohymenophorea, and Armophorea; (3) the number of small subunit ribosomal proteins (rps) encoded in mitogenomes increases in the later branching classes of ciliates, whereas rps8 shows a loss trend during the evolution of Euplotes taxa; (4) the mitogenomes of spirotrichs exhibit A/T codon bias at the third position, and the codon bias is mainly due to DNA mutation in oligotrichs, hypotrichs and Diophrys appendiculata; (5) the phylogenetic position of D. appendiculata is unstable and controversial based on both phylogenetic analyses and mitogenome evidence. In summary, we investigated the mitogenome diversity of spirotrichs and broadened our understanding of the evolution of mitochondria in ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00249-7.
Collapse
Affiliation(s)
- Tengteng Zhang
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jinyu Fu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Chao Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Ruitao Gong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | | | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625 USA
| | - Chen Shao
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Ting Cheng
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
4
|
Duan L, Li H, Ju A, Zhang Z, Niu J, Zhang Y, Diao J, Liu Y, Song N, Ma H, Kataoka K, Gao S, Wang Y. Methyl-dependent auto-regulation of the DNA N6-adenine methyltransferase AMT1 in the unicellular eukaryote Tetrahymena thermophila. Nucleic Acids Res 2025; 53:gkaf022. [PMID: 39868535 PMCID: PMC11760949 DOI: 10.1093/nar/gkaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1. Catalytically inactive AMT1 reduced 6mA level on the AMT1 gene and its expression, suggesting that AMT1 modulated its own transcription via 6mA. Furthermore, AMT1-dependent 6mA regulated the transcription of its target genes, thereby affecting cell fitness. Our findings unveil a positive feedback loop of transcriptional activation on the AMT1 gene and highlight the crucial role of AMT1-dependent 6mA in gene transcription.
Collapse
Affiliation(s)
- Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Haicheng Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Junhua Niu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yumiao Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Jinghan Diao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yongqiang Liu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Honggang Ma
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Kensuke Kataoka
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yuanyuan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Su H, Hao T, Yu M, Zhou W, Wu L, Sheng Y, Yi Z. Complex evolutionary patterns within the tubulin gene family of ciliates, unicellular eukaryotes with diverse microtubular structures. BMC Biol 2024; 22:170. [PMID: 39135200 PMCID: PMC11321004 DOI: 10.1186/s12915-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution. Nonetheless, the evolutionary history of the tubulin subfamilies within and among ciliate classes is unclear. RESULTS We analyzed the evolutionary pattern of ciliate tubulin gene family based on genomes/transcriptomes of 60 species covering 10 ciliate classes. Results showed: (1) Six tubulin subfamilies (α_Tub, β_Tub, γ_Tub, δ_Tub, ε_Tub, and ζ_Tub) originated from the last eukaryotic common ancestor (LECA) were observed within ciliates. Among them, α_Tub, β_Tub, and γ_Tub were present in all ciliate species, while δ_Tub, ε_Tub, and ζ_Tub might be independently lost in some species. (2) The evolutionary history of the tubulin subfamilies varied. Evolutionary history of ciliate γ_Tub, δ_Tub, ε_Tub, and ζ_Tub showed a certain degree of consistency with the phylogeny of species after the divergence of ciliate classes, while the evolutionary history of ciliate α_Tub and β_Tub varied among different classes. (3) Ciliate α- and β-tubulin isoforms could be classified into an "ancestral group" present in LECA and a "divergent group" containing only ciliate sequences. Alveolata-specific expansion events probably occurred within the "ancestral group" of α_Tub and β_Tub. The "divergent group" might be important for ciliate morphological differentiation and wide environmental adaptability. (4) Expansion events of the tubulin gene family appeared to be consistent with whole genome duplication (WGD) events in some degree. More Paramecium-specific tubulin expansions were detected than Tetrahymena-specific ones. Compared to other Paramecium species, the Paramecium aurelia complex underwent a more recent WGD which might have experienced more tubulin expansion events. CONCLUSIONS Evolutionary history among different tubulin gene subfamilies seemed to vary within ciliated protists. And the complex evolutionary patterns of tubulins among different ciliate classes might drive functional diversification. Our investigation provided meaningful information for understanding the evolution of tubulin gene family in the early stages of eukaryote evolution.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tingting Hao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wuyu Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lei Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
- School of Marine and Fisheries, Guangdong Eco-engineering Polytechnic, Guangzhou, 510320, China
| | - Yalan Sheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Liu Y, Niu J, Ye F, Solberg T, Lu B, Wang C, Nowacki M, Gao S. Dynamic DNA N 6-adenine methylation (6mA) governs the encystment process, showcased in the unicellular eukaryote Pseudocohnilembus persalinus. Genome Res 2024; 34:256-271. [PMID: 38471739 PMCID: PMC10984389 DOI: 10.1101/gr.278796.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
The formation of resting cysts commonly found in unicellular eukaryotes is a complex and highly regulated survival strategy against environmental stress that involves drastic physiological and biochemical changes. Although most studies have focused on the morphology and structure of cysts, little is known about the molecular mechanisms that control this process. Recent studies indicate that DNA N 6-adenine methylation (6mA) could be dynamically changing in response to external stimuli; however, its potential role in the regulation of cyst formation remains unknown. We used the ciliate Pseudocohnilembus persalinus, which can be easily induced to form cysts to investigate the dynamic pattern of 6mA in trophonts and cysts. Single-molecule real-time (SMRT) sequencing reveals high levels of 6mA in trophonts that decrease in cysts, along with a conversion of symmetric 6mA to asymmetric 6mA. Further analysis shows that 6mA, a mark of active transcription, is involved in altering the expression of encystment-related genes through changes in 6mA levels and 6mA symmetric-to-asymmetric conversion. Most importantly, we show that reducing 6mA levels by knocking down the DNA 6mA methyltransferase PpAMT1 accelerates cyst formation. Taken together, we characterize the genome-wide 6mA landscape in P. persalinus and provide insights into the role of 6mA in gene regulation under environmental stress in eukaryotes. We propose that 6mA acts as a mark of active transcription to regulate the encystment process along with symmetric-to-asymmetric conversion, providing important information for understanding the molecular response to environmental cues from the perspective of 6mA modification.
Collapse
Affiliation(s)
- Yongqiang Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Junhua Niu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fei Ye
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Therese Solberg
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Department of Molecular Biology, Keio University School of Medicine, 160-8582 Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, 108-8345 Tokyo, Japan
| | - Borong Lu
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chundi Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Shan Gao
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|