1
|
Kabeya N, Ramos-Llorens M, Nakano Y, Gomes-Dos-Santos A, Teixeira A, Fujibayashi M, Haro JG, Navarro JC, Castro LFC, Haga Y, Monroig Ó. Methyl-end desaturases determine the capability for de novo biosynthesis of polyunsaturated fatty acids in bivalves. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159617. [PMID: 40288673 DOI: 10.1016/j.bbalip.2025.159617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Recent studies have shown that many invertebrate species possess methyl-end desaturases (herein referred to as 'ωx'), enabling biosynthesis of polyunsaturated fatty acids (PUFA). However, the phylogenetic distribution of these enzymes across the animal kingdom remains puzzling, possibly due to horizontal gene transfer (HGT) and/or independent large-scale gene loss in certain invertebrate lineages. In molluscs, ωx genes have been identified in various cephalopods and gastropods but remain barely explored in bivalves. The increasing availability of genomic and transcriptomic resources enables a comprehensive exploration of the ωx gene repertoire in bivalves. To elucidate the distribution of ωx in bivalves, we conducted a broad homology search across existing genome and transcriptome assemblies, followed by functional characterisation of ωx in lineage representative species. Our results revealed no ωx-like sequences in any of the 65 Pteriomorphia species, suggesting gene loss in this clade. However, ωx-like sequences were found in Protobranchia, Palaeoheterodonta and Imparidentia. We analysed ωx from Solemya pusilla (Protobranchia), Lanceolaria oxyrhyncha and Margaritifera margaritifera (Palaeoheterodonta), and Ruditapes philippinarum and Tridacna crocea (Imparidentia). Except for M. margaritifera, which had two ωx genes, each species had a single ωx gene. Functional analysis showed Δ15Δ17Δ19 desaturase activity in the R. philippinarum and T. crocea ωx, while the L. oxyrhyncha ωx exhibited Δ15Δ17 activity but not Δ19. Both ωx from M. margaritifera showed no detectable activity in yeast. Interestingly, the S. pusilla ωx exhibited Δ12 desaturase activity. These findings highlight the diversity of ωx desaturation capabilities in bivalves, with significant gene loss in Pteriomorphia.
Collapse
Affiliation(s)
- Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Marc Ramos-Llorens
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Yo Nakano
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| | - Amílcar Teixeira
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Megumu Fujibayashi
- Faculty of Engineering, Kyushu University, 774, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Juan G Haro
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan C Navarro
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Óscar Monroig
- Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
2
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|