1
|
Baniasadi M, Baghban Salehi M, Baniasadi H. Acrylamide/Alyssum campestre seed gum hydrogels enhanced with titanium carbide: Rheological insights for cardiac tissue engineering. Int J Biol Macromol 2025; 293:139240. [PMID: 39732250 DOI: 10.1016/j.ijbiomac.2024.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study investigates the use of acrylamide and Alyssum campestre seed gum (ACSG) to create hydrogel composites with enhanced electrical and mechanical properties by incorporating titanium carbide (TiC). The composites were analyzed through techniques such as FTIR, SEM, TEM, TGA, swelling, rheology, tensile, electrical conductivity, antibacterial, and MTT assays. XRD analysis showed that 0.5 % TiC NPs were exfoliated in the hydrogel, while 1 % was intercalated. SEM images showed that ACSG created a semi-interpenetrating polymer network with interconnected cavities averaging 9.1 μm, which reduced to 3.6 μm with 0.5%TiC and 51.8 nm with 1%TiC due to increased crosslinking density. TGA results confirmed hydrogel stability at autoclave temperatures. Rheological testing revealed that the hydrogel exhibited a maximum resistance of 317 kPa. The addition of 1 % TiC enhanced its electrical conductivity to 1.5 × 10-2S/cm, making it suitable for applications in cardiac tissue engineering. MTT assays confirmed the hydrogel's biocompatibility and demonstrated its superior antibacterial activity against Staphylococcus aureus compared to Escherichia coli. The AM/ACSG/TiC hydrogel is a promising material for cardiac tissue engineering because of its adjustable mechanical properties, excellent electrical conductivity, and strong compatibility with cell cultures. The addition of ACSG improves the hydrogel's rheological behavior, which is crucial for promoting effective cell growth.
Collapse
Affiliation(s)
- Mona Baniasadi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Mahsa Baghban Salehi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Hossein Baniasadi
- Department of Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran; Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Li S, Huang C, Liu H, Han X, Wang Z, Chen Z, Huang J, Wang Z. A viscoelastic-stochastic model of cell adhesion considering matrix morphology and medium viscoelasticity. SOFT MATTER 2024; 20:7270-7283. [PMID: 39239672 DOI: 10.1039/d4sm00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Quantitative investigation of the adhesive behavior between cells and the extracellular matrix (ECM) through molecular bonds is essential for cell culture and bio-medical engineering in vitro. Cell adhesion is a complex multi-scale behavior that includes temporal and spatial scales. However, the influence of the cell and matrix creep effect and the complex spatial morphology characteristics of the matrix on the cell adhesion mechanism is unclear. In the present study, an idealized theoretical model has been considered, where the adhesion of cells and the matrix is simplified into a planar strain problem of homogeneous viscoelastic half-spaces. Furthermore, a new viscoelastic-stochastic model that considers the morphological characteristics of the matrix, the viscoelasticity of the cell and the viscoelasticity of the substrate was developed under the action of a constant external force. The model characterizes the matrix topographical features by fractal dimension (FD), interprets the effects of FD and medium viscoelasticity on the molecular bond force and the receptor-ligand bond re-association rate and reveals a new mechanism for the stable adhesion of molecular bond clusters by Monte Carlo simulation. Based on this model, it was identified that the temporal and spatial distribution of molecular bond force was affected by the matrix FD and the lifetime and stability of the molecular bond cluster could be significantly improved by tuning the FD. At the same time, the viscoelastic creep effect of the cell and matrix increased the re-association rate of open bonds and could expand the window of stable adhesion more flexibly.
Collapse
Affiliation(s)
- Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
He K, Kou G, Cai H, Tian G, Xu Z, Yang Z. Effects of Contact Surface Shape on Dynamic Lifetime and Strength of Molecular Bond Clusters under Displacement- and Force-Controlled Loading Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10947-10956. [PMID: 38752855 DOI: 10.1021/acs.langmuir.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor β, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.
Collapse
Affiliation(s)
- Kuncheng He
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Guangjie Kou
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Hui Cai
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gan Tian
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhigao Xu
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhengwei Yang
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| |
Collapse
|
4
|
Braeutigam A, Burnet AF, Gompper G, Sabass B. Clutch model for focal adhesions predicts reduced self-stabilization under oblique pulling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:295101. [PMID: 38574682 DOI: 10.1088/1361-648x/ad3ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.
Collapse
Affiliation(s)
- Andrea Braeutigam
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Anton F Burnet
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Sabass
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| |
Collapse
|
5
|
Guo Y, Mofrad MRK, Tepole AB. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. BIOPHYSICS REVIEWS 2022; 3:031303. [PMID: 38505274 PMCID: PMC10903412 DOI: 10.1063/5.0085025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 03/21/2024]
Abstract
Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Bonfanti A, Duque J, Kabla A, Charras G. Fracture in living tissues. Trends Cell Biol 2022; 32:537-551. [DOI: 10.1016/j.tcb.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
7
|
Zhang Y, Li L, Wang J. Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. MEMBRANES 2021; 11:membranes11120993. [PMID: 34940494 PMCID: PMC8705050 DOI: 10.3390/membranes11120993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
Nanoparticle (NP)–cell interaction mediated by receptor–ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity–diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor–ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP–cell interactions and improve the efficiency of target drug delivery systems.
Collapse
Affiliation(s)
| | - Long Li
- Correspondence: (L.L.); (J.W.)
| | | |
Collapse
|
8
|
Liu HT, Zhou ZX, Ren Z, Yang S, Liu LS, Wang Z, Wei DH, Ma XF, Ma Y, Jiang ZS. EndMT: Potential Target of H 2S against Atherosclerosis. Curr Med Chem 2021; 28:3666-3680. [PMID: 33200693 DOI: 10.2174/0929867327999201116194634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injury and atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for anti-atherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. As H2S has anti- inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing, but anti-atherosclerosis's molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti- EndMT effect is discussed in this review.
Collapse
Affiliation(s)
- Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Sai Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yun Ma
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
9
|
Li L, Kang W, Wang J. Mechanical Model for Catch-Bond-Mediated Cell Adhesion in Shear Flow. Int J Mol Sci 2020; 21:ijms21020584. [PMID: 31963253 PMCID: PMC7013535 DOI: 10.3390/ijms21020584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Catch bond, whose lifetime increases with applied tensile force, can often mediate rolling adhesion of cells in a hydrodynamic environment. However, the mechanical mechanism governing the kinetics of rolling adhesion of cells through catch-bond under shear flow is not yet clear. In this study, a mechanical model is proposed for catch-bond-mediated cell adhesion in shear flow. The stochastic reaction of bond formation and dissociation is described as a Markovian process, whereas the dynamic motion of cells follows classical analytical mechanics. The steady state of cells significantly depends on the shear rate of flow. The upper and lower critical shear rates required for cell detachment and attachment are extracted, respectively. When the shear rate increases from the lower threshold to the upper threshold, cell rolling became slower and more regular, implying the flow-enhanced adhesion phenomenon. Our results suggest that this flow-enhanced stability of rolling adhesion is attributed to the competition between stochastic reactions of bonds and dynamics of cell rolling, instead of force lengthening the lifetime of catch bonds, thereby challenging the current view in understanding the mechanism behind this flow-enhanced adhesion phenomenon. Moreover, the loading history of flow defining bistability of cell adhesion in shear flow is predicted. These theoretical predictions are verified by Monte Carlo simulations and are related to the experimental observations reported in literature.
Collapse
Affiliation(s)
- Long Li
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
- Correspondence: (L.L.); (J.W.)
| | - Wei Kang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
- Correspondence: (L.L.); (J.W.)
| |
Collapse
|
10
|
Gong Z, Fang C, You R, Shao X, Wei X, Chang RCC, Lin Y. Distinct relaxation timescales of neurites revealed by rate-dependent indentation, relaxation and micro-rheology tests. SOFT MATTER 2019; 15:166-174. [PMID: 30420982 DOI: 10.1039/c8sm01747f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the dynamic response of neurites is believed to play crucial roles in processes like axon outgrowth and formation of the neural network, the dynamic mechanical properties of such protrusions remain poorly understood. In this study, by using AFM (atomic force microscopy) indentation, we systematically examined the dynamic behavior of well-developed neurites on primary neurons under different loading modes (step loading, oscillating loading and ramp loading). Interestingly, the response was found to be strongly rate-dependent, with an apparent initial and long-term elastic modulus around 800 and 80 Pa, respectively. To better analyze the measurement data and extract information of key interest, the finite element simulation method (FEM) was also conducted where the neurite was treated as a viscoelastic solid consisting of multiple characteristic relaxation times. It was found that a minimum of three relaxation timescales, i.e. ∼0.01, 0.1 and 1 seconds, are needed to explain the observed relaxation curve as well as fit simulation results to the indentation and rheology data under different loading rates and driving frequencies. We further demonstrated that these three characteristic relaxation times likely originate from the thermal fluctuations of the microtubule, membrane relaxation and cytosol viscosity, respectively. By identifying key parameters describing the time-dependent behavior of neurites, as well as revealing possible physical mechanisms behind, this study could greatly help us understand how neural cells perform their biological duties over a wide spectrum of timescales.
Collapse
Affiliation(s)
- Ze Gong
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Li L, Zhang Y, Wang J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170063. [PMID: 28573012 PMCID: PMC5451813 DOI: 10.1098/rsos.170063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 05/18/2023]
Abstract
Biophysical-factor-dependent cellular uptake of nanoparticles (NPs) through receptor-diffusion-mediated endocytosis bears significance in pathology, cellular immunity and drug-delivery systems. Advanced nanotechnology of NP synthesis provides methods for modifying NP surface with different ligand distributions. However, no report discusses effects of ligand distribution on NP surface on receptor-diffusion-mediated cellular uptake. In this article, we used a statistical dynamics model of receptor-diffusion-mediated endocytosis to examine ligand-distribution-dependent cellular uptake dynamics by considering that ligand-receptor complexes drive engulfing to overcome resistance to membrane deformation and changes in configuration entropy of receptors. Results showed that cellular internalization of NPs strongly depended on ligand distribution and that cellular-uptake efficiency of NPs was high when ligand distribution was within a range around uniform distribution. This feature of endocytosis ensures robust infection ability of viruses to enter host cells. Interestingly, results also indicated that optimal ligand distribution associated with highest cellular-uptake efficiency slightly depends on distribution pattern of ligands and density of receptors, and the optimal distribution becomes uniform when receptor density is sufficiently large. Position of initial contact point is also a factor affecting dynamic wrapping. This study explains why most enveloped viruses present almost homogeneous ligand distribution and is useful in designing controlled-release drug-delivery systems.
Collapse
Affiliation(s)
| | | | - Jizeng Wang
- Author for correspondence: Jizeng Wang e-mail:
| |
Collapse
|