1
|
Posso DA, Shimoia EP, da-Silva CJ, Thuy Phan AN, Reissig GN, da Silva Martins T, Ehrt B, Martins PD, de Oliveira ACB, Blank LM, Borella J, van Dongen JT, Amarante LD. Soybean tolerance to waterlogging is achieved by detoxifying root lactate via lactate dehydrogenase in leaves and metabolizing malate and succinate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109520. [PMID: 39832393 DOI: 10.1016/j.plaphy.2025.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance. After 11 days of waterlogging, roots of the tolerant line (PELBR15-7015C) modulated their fermentative metabolism by exporting key metabolites (lactate, malate, and succinate) to the shoot. These metabolites were metabolized in the leaves, supporting photosynthesis and facilitating sugar export to the roots, sustaining a root-shoot-root cycling process. In contrast, the sensitive line (PELBR15-7060) entered a quiescent state, depleting its carbon stock and accumulating protective metabolites. Our study reveals that long-term waterlogging tolerance is primarily achieved through lactate detoxification in the leaves, along with malate and succinate metabolism, enabling root metabolism to withstand hypoxia. This mechanism offers new insights into crop resilience under waterlogged conditions, with implications for modern agriculture as climate change intensifies the frequency and duration of such stress events.
Collapse
Affiliation(s)
- Douglas Antônio Posso
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Institute of Biology I, RWTH Aachen University, Aachen, NRW, 52074, Germany.
| | | | - Cristiane Jovelina da-Silva
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695-7609, United States
| | - An Nguyen Thuy Phan
- IAMB - Institute of Applied Microbiology, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | | | | | - Brigitta Ehrt
- Institute of Biology I, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | | | | | - Lars Mathias Blank
- IAMB - Institute of Applied Microbiology, RWTH Aachen University, Aachen, NRW, 52074, Germany
| | - Junior Borella
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil; Institute of Biological Science, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Luciano do Amarante
- Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil
| |
Collapse
|
2
|
Maggiolini FAM, Prencipe A, Bergamini C, Marsico AD, Vendemia M, Santamaria M, Giannandrea MA, D’Amico M, Forleo LR, Perniola R, Velasco R, Cardone MF. A Comparative Transcriptomic Study Reveals Temporal and Genotype-Specific Defense Responses to Botrytis cinerea in Grapevine. J Fungi (Basel) 2025; 11:124. [PMID: 39997418 PMCID: PMC11856255 DOI: 10.3390/jof11020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Grapevine (Vitis vinifera L.), a globally significant crop, is highly susceptible to Botrytis cinerea, the causative agent of gray mold disease. This study investigates transcriptomic responses to B. cinerea in tolerant and susceptible grapevine genotypes using RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were identified at three time points (T1, T2, T3), highlighting both genotype-independent and genotype-specific responses. Early-stage infection (T1) revealed rapid and robust activation of defense pathways in both genotypes, though the tolerant genotype showed enhanced modulation of metabolic processes by T2, prioritizing secondary metabolism and stress adaptation over growth. In contrast, the susceptible genotype exhibited less coordinated metabolic reprogramming, with delayed or weaker activation of key defense mechanisms. Gene Ontology and KEGG analyses identified critical pathways, including phenylpropanoid biosynthesis-like lignin metabolism, MAPK signaling, as well as candidate genes such as WRKY transcription factors and enzymes involved in cell wall fortification and antifungal compound biosynthesis. Genotype-specific responses emphasized metabolic flexibility as a determinant of resistance, with the tolerant genotype exhibiting superior resource allocation to defense pathways. These findings provide insights into the molecular basis of grapevine resistance to B. cinerea, offering potential targets for breeding or genetic engineering to enhance resilience and reduce fungicide dependency.
Collapse
Affiliation(s)
- Flavia Angela Maria Maggiolini
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Annalisa Prencipe
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Carlo Bergamini
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Marco Vendemia
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Marika Santamaria
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Maria Angela Giannandrea
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Margherita D’Amico
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Lucia Rosaria Forleo
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Rocco Perniola
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| | - Maria Francesca Cardone
- Council for Agricultural Research and Economics—Research Center Viticulture and Enology (CREA-VE), 8 Via Casamassima 148, 70010 Turi, Italy
| |
Collapse
|
3
|
Ge Q, Zhang Y, Wu J, Wei B, Li S, Nan H, Fang Y, Min Z. Exogenous strigolactone alleviates post-waterlogging stress in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109124. [PMID: 39276672 DOI: 10.1016/j.plaphy.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Yang Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China
| | - Jinren Wu
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Bingxin Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Sijia Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Nan
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China.
| | - Zhuo Min
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China.
| |
Collapse
|
4
|
Wang X, Bai Y, Zhang L, Jiang G, Zhang P, Liu J, Li L, Huang L, Qin P. Identification and core gene-mining of Weighted Gene Co-expression Network Analysis-based co-expression modules related to flood resistance in quinoa seedlings. BMC Genomics 2024; 25:728. [PMID: 39069616 DOI: 10.1186/s12864-024-10638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND As an emerging food crop with high nutritional value, quinoa has been favored by consumers in recent years; however, flooding, as an abiotic stress, seriously affects its growth and development. Currently, reports on the molecular mechanisms related to quinoa waterlogging stress responses are lacking; accordingly, the core genes related to these processes were explored via Weighted Gene Co-expression Network Analysis (WGCNA). RESULTS Based on the transcriptome data, WGCNA was used to construct a co-expression network of weighted genes associated with flooding resistance-associated physiological traits and metabolites. Here, 16 closely related co-expression modules were obtained, and 10 core genes with the highest association with the target traits were mined from the two modules. Functional annotations revealed the biological processes and metabolic pathways involved in waterlogging stress, and four candidates related to flooding resistance, specifically AP2/ERF, MYB, bHLH, and WRKY-family TFs, were also identified. CONCLUSIONS These results provide clues to the identification of core genes for quinoa underlying quinoa waterlogging stress responses. This could ultimately provide a theoretical foundation for breeding new quinoa varieties with flooding tolerance.
Collapse
Affiliation(s)
- Xuqin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yutao Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lingyuan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guofei Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Zhang P, Wang B, Guo Y, Wang T, Wei Q, Luo Y, Li H, Wu H, Wang X, Zhang X. Identification of Drought-Resistant Response in Proso Millet ( Panicum miliaceum L.) Root through Physiological and Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1693. [PMID: 38931125 PMCID: PMC11207614 DOI: 10.3390/plants13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to drought. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, to clarify the molecular mechanism of proso millet in response to drought stress, the physiological indexes and transcriptome in the root of seedlings of the proso millet cultivar 'Yumi 2' were analyzed at 0, 0.5, 1.0, 1.5, and 3.0 h of stimulated drought stress by using 20% PEG-6000 and after 24 h of rehydration. The results showed that the SOD activity, POD activity, soluble protein content, MDA, and O2-· content of 'Yumi 2' increased with the time of drought stress, but rapidly decreased after rehydration. Here, 130.46 Gb of clean data from 18 samples were obtained, and the Q30 value of each sample exceeded 92%. Compared with 0 h, the number of differentially expressed genes (DEGs) reached the maximum of 16,105 after 3 h of drought, including 9153 upregulated DEGs and 6952 downregulated DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that upregulated DEGs were mainly involved in ATP binding, nucleus, protein serine/threonine phosphatase activity, MAPK signaling pathway-plant, plant-pathogen interactions, and plant hormone signal transduction under drought stress, while downregulated DEGs were mainly involved in metal ion binding, transmembrane transporter activity, and phenylpropanoid biosynthesis. Additionally, 1441 TFs screened from DEGs were clustered into 64 TF families, such as AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families. Genes related to physiological traits were closely related to starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. In conclusion, the active oxygen metabolism system and the soluble protein of proso millet root could be regulated by the activity of protein serine/threonine phosphatase. AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families were found to be closely associated with drought tolerance in proso millet root. This study will provide data to support a subsequent study on the function of the drought tolerance gene in proso millet.
Collapse
Affiliation(s)
- Panpan Zhang
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
- Dryland Agricultural Engineering Technology Research Center in Northern of Shaanxi, Yulin 719000, China
| | - Binglei Wang
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Yaning Guo
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
- Dryland Agricultural Engineering Technology Research Center in Northern of Shaanxi, Yulin 719000, China
| | - Tao Wang
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Qian Wei
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Yan Luo
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Hao Li
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Huiping Wu
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
| | - Xiaolin Wang
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
- Dryland Agricultural Engineering Technology Research Center in Northern of Shaanxi, Yulin 719000, China
| | - Xiong Zhang
- College of Life Science, Yulin University, Yulin 719000, China; (B.W.); (Y.G.); (T.W.); (Q.W.); (Y.L.); (H.L.); (H.W.); (X.W.)
- Dryland Agricultural Engineering Technology Research Center in Northern of Shaanxi, Yulin 719000, China
| |
Collapse
|
6
|
Galvan FER, Pavlick R, Trolley G, Aggarwal S, Sousa D, Starr C, Forrestel E, Bolton S, Alsina MDM, Dokoozlian N, Gold KM. Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy. PHYTOPATHOLOGY 2023; 113:1439-1446. [PMID: 37097472 DOI: 10.1094/phyto-01-23-0030-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Ryan Pavlick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Z, Chen Z, Song H, Cheng S. From plant survival to thriving: exploring the miracle of brassinosteroids for boosting abiotic stress resilience in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1218229. [PMID: 37546254 PMCID: PMC10401277 DOI: 10.3389/fpls.2023.1218229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Abiotic stresses pose significant threat to horticultural crop production worldwide. These stresses adversely affect plant growth, development, and ultimately declined crop growth, yield and quality. In recent years, plant scientists have been actively investigating innovative strategies to enhance abiotic stress resilience in crops, and one promising avenue of research focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones that play crucial roles in various physiological processes, including cell elongation, differentiation, and stress responses. They have emerged as potent regulators of plant growth and development, and their role in improving abiotic stress tolerance is gaining considerable attention. BRs have been shown to mitigate the negative effects of abiotic stresses by modulating key physiological and biochemical processes, including stomatal regulation, antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses disrupt numerous physiological functions and lead to undesirable phenotypic traits in plants. The use of BRs as a tool to improve crop resilience offers significant promise for sustainable agriculture in the face of increasing abiotic stresses caused by climate change. By unraveling the phenomenon of BRs, this review emphasizes the potential of BRs as an innovative approach for boosting abiotic stress tolerance and improving the overall productivity and quality of horticultural crops. Further research and field trials are necessary to fully harness the benefits of BRs and translate these findings into practical applications for crop production systems.
Collapse
Affiliation(s)
- Zhilu Zhang
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Zhongyu Chen
- People’s Park Management Office of Nanyang City Garden and Greening Center, Garden and Greening Center of Nanyang City, Nanyang, Henan, China
| | - Haina Song
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| |
Collapse
|
8
|
Ge M, Zhong R, Sadeghnezhad E, Hakeem A, Xiao X, Wang P, Fang J. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:217. [PMID: 35477360 PMCID: PMC9047265 DOI: 10.1186/s12870-022-03599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/14/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Magnesium ion is one of the essential mineral elements for plant growth and development, which participates in a variety of physiological and biochemical processes. Since there is no report on the research of magnesium ion transporter in grape, the study of the structure and function of magnesium ion transporters (MGT) is helpful to understand the dynamic balance mechanism of intracellular magnesium ions and their inter- or intra-cellular activities. RESULT In this study, we identified the members of MGT protein family in grape and performed the phylogenetic and expression analysis. We have identified nine VvMGT genes in grape genome, which are distributed on eight different chromosomes. Phylogenetic analysis showed that MGT family members of grapes were divided into five subfamilies and had obvious homology with Arabidopsis, maize, and pear. Based on transcriptome data from the web databases, we analyzed the expression patterns of VvMGTs at different development stages and in response to abiotic stresses including waterlogging, drought, salinity, and copper. Using qRT-PCR method, we tested the expression of grape VvMGTs under magnesium and aluminum treatments and found significant changes in VvMGTs expression. In addition, four of the MGT proteins in grape were located in the nucleus. CONCLUSION Overall, in this study we investigated the structural characteristics, evolution pattern, and expression analysis of VvMGTs in depth, which laid the foundation for further revealing the function of VvMGT genes in grape.
Collapse
Affiliation(s)
- Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdul Hakeem
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Jiu S, Zhang Y, Han P, Han Y, Xu Y, Liu G, Leng X. Genome-Wide Identification and Expression Analysis of VviYABs Family Reveal Its Potential Functions in the Developmental Switch and Stresses Response During Grapevine Development. Front Genet 2022; 12:762221. [PMID: 35186002 PMCID: PMC8851417 DOI: 10.3389/fgene.2021.762221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Plant-specific YABBY (YAB) transcription factors play multiple roles in plant growth and development process. However, no comprehensive study has been performed in grapevines, especially to determine their roles in berry development and abiotic stress response. A total of seven VviYABs allocated to six chromosomal positions in grapevines were identified and classified into five subfamilies based on phylogenetic and structural analysis. Promoter element analysis and tissue-specific transcriptional response of VviYABs suggested that VviYABs might play vital roles in plant growth and development. VviYAB1, 2, 3, and 5 showed significantly higher expression levels in vegetative/green organs than in mature/woody tissues, implying that VviYABs might be involved in the regulatory switch from immature to mature developmental phases. The expression of VviYAB1, 2, 3, and VviFAS were gradually downregulated during berry developmental and ripening, which can be considered as putative molecular biomarkers between vegetative/green and mature/woody samples, and were used to identify key developmental and metabolic processes in grapevines. Furthermore, VviYAB1 expression was not markedly increased by gibberellic acid (GA3) treatment alone, but displayed significant upregulation when GA3 in combination with N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) were applied, suggesting an involvement of VviYAB1 in fruit expansion by mediating cytokinin signaling pathway. Additionally, microarray and RNA-seq data suggested that VviYABs showed transcriptional regulation in response to various abiotic and biotic stresses, including salt, drought, Bois Noir, Erysiphe necator, and GLRaV-3 infection. Overall, our results provide a better understanding of the classification and functions of VviYABs during berry development and in response to abiotic and biotic stresses in grapevines.
Collapse
Affiliation(s)
- Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Peng Han
- Jiangbei Grape Research Institute of Shandong Province, Shandong, China
| | - Yubo Han
- Jiangbei Grape Research Institute of Shandong Province, Shandong, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gengsen Liu
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gengsen Liu, ; Xiangpeng Leng,
| | - Xiangpeng Leng
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gengsen Liu, ; Xiangpeng Leng,
| |
Collapse
|
10
|
Wang X, Yan L, Wang B, Qian Y, Wang Z, Wu W. Comparative Proteomic Analysis of Grapevine Rootstock in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:749184. [PMID: 34777428 PMCID: PMC8589030 DOI: 10.3389/fpls.2021.749184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Waterlogging severely affects global agricultural production. Clarifying the regulatory mechanism of grapevine in response to waterlogging stress will help to improve the waterlogging tolerance of grapevine. In the present study, the physiological and proteomic responses of SO4 grapevine rootstock to different waterlogging tolerances were comparatively assayed. The results showed that the activities of SOD and POD first increased and then decreased, while the change trend of CAT and APX activities was the opposite. In addition, the MDA and H2O2 contents increased after waterlogging treatment, but the chlorophyll a and chlorophyll b contents decreased. A total of 5,578 grapevine proteins were identified by the use of the tandem mass tag (TMT) labeling technique. Among them, 214 (103 and 111 whose expression was upregulated and downregulated, respectively), 314 (129 and 185 whose expression was upregulated and downregulated, respectively), and 529 (248 and 281 whose expression was upregulated and downregulated, respectively) differentially expressed proteins (DEPs) were identified in T0d vs. T10d, T10d vs. T20d, and T0d vs. T20d comparison groups, respectively. Enrichment analysis showed that these DEPs were mainly involved in glutathione metabolism, carbon fixation, amino sugar and nucleotide sugar metabolism, biosynthesis of amino acids, photosynthesis, carbon metabolism, starch, and sucrose metabolism, galactose metabolism, protein processing and ribosomes. To further verify the proteomic data, the expression of corresponding genes that encode eight DEPs was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results of this study presented an important step toward understanding the resistance mechanisms of grapevine in response to waterlogging stress at the proteome level.
Collapse
|
11
|
Zhang H, Li G, Yan C, Cao N, Yang H, Le M, Zhu F. Depicting the molecular responses of adventitious rooting to waterlogging in melon hypocotyls by transcriptome profiling. 3 Biotech 2021; 11:351. [PMID: 34221821 DOI: 10.1007/s13205-021-02866-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Waterlogging is a severe abiotic stressor that inhibits crop growth and productivity owing to the decline in the amount of oxygen available to the waterlogged organs. Although melon (Cucumis melo L.) is sensitive to waterlogging, its ability to form adventitious roots facilitates the diffusion of oxygen and allows the plant to survive waterlogging. To provide comprehensive insight into the adventitious rooting in response to waterlogging of melon, global transcriptome changes during this process were investigated. Of the 17,146 genes expressed during waterlogging, 7363 of them were differentially expressed in the pairwise comparisons between different waterlogging treatment time points. A further analysis suggested that the genes involved in sugar cleavage, glycolysis, fermentation, reactive oxygen species scavenging, cell wall modification, cell cycle governing, microtubule remodeling, hormone signals and transcription factors could play crucial roles in the adventitious root production induced by waterlogging. Additionally, ethylene and ERFs were found to be vital factors that function in melon during adventitious rooting. This study broadens our understanding of the mechanisms that underlie adventitious rooting induced by waterlogging and lays the theoretical foundation for further molecular breeding of waterlogging-tolerant melon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02866-w.
Collapse
Affiliation(s)
- Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Guoquan Li
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Chengpu Yan
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Na Cao
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Huidong Yang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Meiwang Le
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Fanghong Zhu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
12
|
Wang X, Li N, Li W, Gao X, Cha M, Qin L, Liu L. Advances in Transcriptomics in the Response to Stress in Plants. Glob Med Genet 2020; 7:30-34. [PMID: 32939512 PMCID: PMC7490119 DOI: 10.1055/s-0040-1714414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adverse stress influences the normal growth and development of plants. With the development of molecular biology technology, understanding the molecular mechanism of plants in response to adverse stress has gradually become an important topic for academic exploration. The expression of the transcriptome is dynamic, which reflects the level of expression of all genes in a particular cell, tissue, or organ of an individual organism at a particular stage of growth and development. Transcriptomics can disclose the expression at the whole genome level under stress from the whole transcriptional level, which can be useful in understanding the complex regulatory network associated with the adaptability and tolerance of plants to stress. In this article, we review the application of transcriptomics in understanding the response of plants to biotic stresses such as diseases and insect infestation and abiotic stresses such as water, temperature, salt, and heavy metals to provide a guideline for related research.
Collapse
Affiliation(s)
- Xiaojuan Wang
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| | - Na Li
- Inner Mongolia Academy of Forestry Sciences, Inner Mongolia, Saihan, People's Republic of China
| | - Wei Li
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| | - Xinlei Gao
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| | - Muha Cha
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| | - Lijin Qin
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| | - Lihong Liu
- ChiFeng University, Hongshan, Chifeng, Inner Mongolia, People's Republic of China
| |
Collapse
|
13
|
Keep Calm and Survive: Adaptation Strategies to Energy Crisis in Fruit Trees under Root Hypoxia. PLANTS 2020; 9:plants9091108. [PMID: 32867316 PMCID: PMC7570223 DOI: 10.3390/plants9091108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Plants are permanently facing challenges imposed by the environment which, in the context of the current scenario of global climate change, implies a constant process of adaptation to survive and even, in the case of crops, at least maintain yield. O2 deficiency at the rhizosphere level, i.e., root hypoxia, is one of the factors with the greatest impact at whole-plant level. At cellular level, this O2 deficiency provokes a disturbance in the energy metabolism which has notable consequences on the yield of plant crops. In this sense, although several physiological studies describe processes involved in plant adaptation to root hypoxia in woody fruit trees, with emphasis on the negative impacts on photosynthetic rate, there are very few studies that include -omics strategies for specifically understanding these processes in the roots of such species. Through a de novo assembly approach, a comparative transcriptome study of waterlogged Prunus spp. genotypes contrasting in their tolerance to root hypoxia was revisited in order to gain a deeper insight into the reconfiguration of pivotal pathways involved in energy metabolism. This re-analysis describes the classically altered pathways seen in the roots of woody fruit trees under hypoxia, but also routes that link them to pathways involved with nitrogen assimilation and the maintenance of cytoplasmic pH and glycolytic flow. In addition, the effects of root hypoxia on the transcription of genes related to the mitochondrial oxidative phosphorylation system, responsible for providing adenosine triphosphate (ATP) to the cell, are discussed in terms of their roles in the energy balance, reactive oxygen species (ROS) metabolism and aerenchyma formation. This review compiles key findings that help to explain the trait of tolerance to root hypoxia in woody fruit species, giving special attention to their strategies for managing the energy crisis. Finally, research challenges addressing less-explored topics in recovery and stress memory in woody fruit trees are pointed out.
Collapse
|
14
|
Wei H, Wang P, Chen J, Li C, Wang Y, Yuan Y, Fang J, Leng X. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development. BMC PLANT BIOLOGY 2020; 20:72. [PMID: 32054455 PMCID: PMC7020368 DOI: 10.1186/s12870-020-2239-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/03/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND The B-BOX (BBX) proteins are the class of zinc-finger transcription factors and can regulate plant growth, development, and endure stress response. In plants, the BBX gene family has been identified in Arabidopsis, rice, and tomato. However, no systematic analysis of BBX genes has been undertaken in grapevine. RESULTS In this study, 24 grapevine BBX (VvBBX) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Phylogenetic analysis divided VvBBX genes into five subgroups. Numerous cis-acting elements related to plant development, hormone and/or stress responses were identified in the promoter of the VvBBX genes. The tissue-specific expressional dynamics of VvBBX genes demonstrated that VvBBXs might play important role in plant growth and development. The transcript analysis from transcriptome data and qRT-PCR inferred that 11 VvBBX genes were down-regulated in different fruit developmental stages, while three VvBBX genes were up-regulated. It is also speculated that VvBBX genes might be involved in multiple hormone signaling (ABA, ethylene, GA3, and CPPU) as transcriptional regulators to modulate berry development and ripening. VvBBX22 seems to be responsive to multiple hormone signaling, including ABA, ethylene GA3, and CPPU. Some VvBBX genes were strongly induced by Cu, salt, waterlogging, and drought stress treatment. Furthermore, the expression of VvBBX22 proposed its involvement in multiple functions, including leaf senescence, abiotic stress responses, fruit development, and hormone response. CONCLUSIONS Our results will provide the reference for functional studies of BBX gene family, and highlight its functions in grapevine berry development and ripening. The results will help us to better understand the complexity of the BBX gene family in abiotic stress tolerance and provide valuable information for future functional characterization of specific genes in grapevine.
Collapse
Affiliation(s)
- Hongru Wei
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Changjun Li
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Xiangpeng Leng
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
15
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
16
|
Leng X, Wei H, Xu X, Ghuge SA, Jia D, Liu G, Wang Y, Yuan Y. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genomics 2019; 20:786. [PMID: 31664916 PMCID: PMC6819353 DOI: 10.1186/s12864-019-6159-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The plant-specific TCP transcription factors play different functions in multiple processes of plant growth and development. TCP family genes have been identified in several plant species, but no comprehensive analysis of the TCP family in grapevine has been undertaken to date, especially their roles in fruit development. RESULTS A total of 18 non-redundant grapevine TCP (VvTCP) genes distributing on 11 chromosomes were identified. Phylogenetic and structural analysis showed that VvTCP genes were divided into two main classes - class I and class II. The Class II genes were further classified into two subclasses, the CIN subclass and the CYC/TB1 subclass. Segmental duplication was a predominant duplication event which caused the expansion of VvTCP genes. The cis-acting elements analysis and tissue-specific expression patterns of VvTCP genes demonstrated that these VvTCP genes might play important roles in plant growth and development. Expression patterns of VvTCP genes during fruit development and ripening were analyzed by RNA-Seq and qRT-PCR. Among them, 11 VvTCP genes were down-regulated during different fruit developmental stages, while only one VvTCP genes were up-regulated, suggesting that most VvTCP genes were probably related to early development in grapevine fruit. Futhermore, the expression of most VvTCP genes can be inhibited by drought and waterlogging stresses. CONCLUSIONS Our study establishes the first genome-wide analysis of the grapevine TCP gene family and provides valuable information for understanding the classification and functions of the TCP genes in grapevine.
Collapse
Affiliation(s)
- Xiangpeng Leng
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Hongru Wei
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Xiaozhao Xu
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Sandip A. Ghuge
- 0000 0001 0465 9329grid.410498.0Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, 50250 Bet-Dagan, Israel
| | - Dongjie Jia
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Gengsen Liu
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Yongzhang Wang
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| | - Yongbing Yuan
- 0000 0000 9526 6338grid.412608.9Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Changcheng Road 700, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
17
|
Iacona C, Pistelli L, Cirilli M, Gatti L, Mancinelli R, Ripa MN, Muleo R. Day-Length Is Involved in Flooding Tolerance Response in Wild Type and Variant Genotypes of Rootstock Prunus cerasifera L. FRONTIERS IN PLANT SCIENCE 2019; 10:546. [PMID: 31130972 PMCID: PMC6509233 DOI: 10.3389/fpls.2019.00546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Current and predicted climate changes scenarios require crops with an improved adaptability to mutable environmental features, such as, hypoxia for the root system. In order to overcome the reduction of oxygen, plants activate coping mechanisms and strategies. Prunus spp. are hypoxia-sensitive woody species and although many information has been gathered over the last decades, many physiological mechanisms remain unclear. To verify whether anoxic plant responses are also regulated by photoperiod, plants of Mr.S.2/5-WT plum, and its variant genotypes S.4 tolerant (plus) and S.1 sensitive (minus) to flooding, were grown in a greenhouse and were submitted to natural photoperiod (NP) and to constant photoperiod (CP) from mid-July until the first 10 days of October. From mid-September plants from each genotype, grown under the two photoperiods, were divided into two groups, and one of them underwent long-term flooding. Gas exchange parameters, energetic and biochemical activities, leaf chlorophyll contents, and stress symptoms were measured at different times, whereas soluble sugars were quantified in leaves and roots 14 days after flooding, when stress symptoms in WT and S.1 became prominent. Seasonal changes in the photoperiod played a role in the adaptability to anoxia, although flooding stress response differed among the three genotypes. Anoxia affected leaf gas exchange and S.4 flooded-leaves retained higher ACO2 under conditions of NP and CP. Leaf soluble sugar concentration differed among genotypes. Regardless the photoperiod, S.4 anoxic-leaf sugar concentration was the lowest, except for sorbitol. S.4 anoxic-roots under CP accumulated the highest levels of sucrose and sorbitol. Influences of the photoperiod were observed in WT and S.1 anoxic-leaves, whereas S.1 anoxic roots accumulated the lowest concentration of sugars, regardless of photoperiod. Leaf and root respiratory activity in flooded-plants was highest in S.4, and ADH activity increased in all flooded plants under CP but the highest activity was observed only in S.1 under NP during flooding. Results are consistent with the hypothesis that the S.4 genotype has a plastic adaptability to flooding stress, escaping from the photoperiod regulatory cross-talk system, and can better cope with the new scenarios generated by climate changes.
Collapse
Affiliation(s)
- Calogero Iacona
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Lorenzo Gatti
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Roberto Mancinelli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Nicolina Ripa
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Tree and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Italy
| |
Collapse
|