1
|
Ganhör C, Rezk M, Doppler C, Ruthmeier T, Wechselberger C, Müller M, Kotnik M, Puh Š, Messner B, Bernhard D. Aluminum, a colorful gamechanger: Uptake of an aluminum-containing food color in human cells and its implications for human health. Food Chem 2024; 442:138404. [PMID: 38237295 DOI: 10.1016/j.foodchem.2024.138404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
Aluminum is added to many food colors to change their solubility. This study compares the aluminum-containing food color carmine with its aluminum-free version carminic acid (both E 120), hypothesizing that the addition of aluminum does not only change the color's solubility, but also its effects on human cells. We could show that carmine, but not carminic acid, is taken up by gastrointestinal Caco-2 and umbilical vein endothelial cells (HUVEC). Clear differences between gene expression profiles of Caco-2 cells exposed to carmine, carminic acid or control were shown. KEGG analysis revealed that carmine-specific genes suppress oxidative phosphorylation, and showed that this suppression is associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. Furthermore, carmine, but not carminic acid, increased proliferation of Caco-2 cells. Our findings show that a food color containing aluminum induces different cellular effects compared to its aluminum-free form, which is currently not considered in EU legislation.
Collapse
Affiliation(s)
- Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marlene Rezk
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - Christian Doppler
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Teresa Ruthmeier
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Marina Müller
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Michaela Kotnik
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Špela Puh
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria.
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria; Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|