1
|
Khodami F, Mahoney AS, Coyle JL, Sejdić E. Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:711-720. [PMID: 39698476 PMCID: PMC11655099 DOI: 10.1109/jtehm.2024.3497895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Patients with nasogastric (NG) tubes require careful monitoring due to the potential impact of the tube on their ability to swallow safely. This study aimed to investigate the utility of high-resolution cervical auscultation (HRCA) signals in assessing swallowing functionality of patients using feeding tubes. HRCA, capturing swallowing vibratory and acoustic signals, has been explored as a surrogate for videofluoroscopy image analysis in previous research. In this study, we analyzed HRCA signals recorded from patients with NG tubes to identify swallowing kinematic events within this group of subjects. Machine learning architectures from prior research endeavors, originally designed for participants without NG tubes, were fine-tuned to accomplish three tasks in the target population: estimating the duration of upper esophageal sphincter opening, estimating the duration of laryngeal vestibule closure, and tracking the hyoid bone. The convolutional recurrent neural network proposed for the first task predicted the onset of upper esophageal sphincter opening and closure for 67.61% and 82.95% of patients, respectively, with an error margin of fewer than three frames. The hybrid model employed for the second task successfully predicted the onset of laryngeal vestibule closure and reopening for 79.62% and 75.80% of patients, respectively, with the same error margin. The stacked recurrent neural network identified hyoid bone position in test frames, achieving a 41.27% overlap with ground-truth outputs. By applying established algorithms to an unseen population, we demonstrated the utility of HRCA signals for swallowing assessment in individuals with NG tubes and showcased the generalizability of algorithms developed in our previous studies. Clinical impact: This study highlights the promise of HRCA signals for assessing swallowing in patients with NG tubes, potentially improving diagnosis, management, and care integration in both clinical and home healthcare settings.
Collapse
Affiliation(s)
- Farnaz Khodami
- Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A4Canada
| | - Amanda S. Mahoney
- Department of the Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of PittsburghPittsburghPA15213USA
| | - James L. Coyle
- Department of the Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of PittsburghPittsburghPA15213USA
| | - Ervin Sejdić
- Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A4Canada
- North York General HospitalTorontoONM2K 1E1Canada
| |
Collapse
|
2
|
Anwar A, Khalifa Y, Lucatorto E, Coyle JL, Sejdic E. Towards a comprehensive bedside swallow screening protocol using cross-domain transformation and high-resolution cervical auscultation. Artif Intell Med 2024; 154:102921. [PMID: 38991399 DOI: 10.1016/j.artmed.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging noninvasive and accessible option to assess swallowing by relying upon accelerometry and sound sensors. HRCA has shown tremendous promise and accuracy in identifying and predicting swallowing physiology and biomechanics with accuracies equivalent to trained human judges. These insights have historically been available only through instrumental swallowing evaluation methods, such as videofluoroscopy and endoscopy. HRCA uses supervised learning techniques to interpret swallowing physiology from the acquired signals, which are collected during radiographic assessment of swallowing using barium contrast. Conversely, bedside swallowing screening is typically conducted in non-radiographic settings using only water. This poses a challenge to translating and generalizing HRCA algorithms to bedside screening due to the rheological differences between barium and water. To address this gap, we proposed a cross-domain transformation framework that uses cycle generative adversarial networks to convert HRCA signals of water swallows into a domain compatible with the barium swallows-trained HRCA algorithms. The proposed framework achieved a cross-domain transformation accuracy that surpassed 90%. The authenticity of the generated signals was confirmed using a binary classifier to confirm the framework's capability to produce indistinguishable signals. This framework was also assessed for retaining swallow physiological and biomechanical properties in the signals by applying an existing model from the literature that identifies the opening and closure of the upper esophageal sphincter. The outcomes of this model showed nearly identical results between the generated and original signals. These findings suggest that the proposed transformation framework is a feasible avenue to advance HCRA towards clinical deployment for water-based swallowing screenings.
Collapse
Affiliation(s)
- Ayman Anwar
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| | - Yassin Khalifa
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA; Information Technology Analytics, University of Pittsburgh, Pittsburgh, PA, USA; Systems and Biomedical Engineering, Cairo University, Giza, Egypt.
| | - Erin Lucatorto
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ervin Sejdic
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; North York General Hospital, Toronto, ON, Canada.
| |
Collapse
|
3
|
Li W, Mao S, Mahoney AS, Coyle JL, Sejdić E. Automatic Tracking of Hyoid Bone Displacement and Rotation Relative to Cervical Vertebrae in Videofluoroscopic Swallow Studies Using Deep Learning. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1922-1932. [PMID: 38383805 PMCID: PMC11300761 DOI: 10.1007/s10278-024-01039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
The hyoid bone displacement and rotation are critical kinematic events of the swallowing process in the assessment of videofluoroscopic swallow studies (VFSS). However, the quantitative analysis of such events requires frame-by-frame manual annotation, which is labor-intensive and time-consuming. Our work aims to develop a method of automatically tracking hyoid bone displacement and rotation in VFSS. We proposed a full high-resolution network, a deep learning architecture, to detect the anterior and posterior of the hyoid bone to identify its location and rotation. Meanwhile, the anterior-inferior corners of the C2 and C4 vertebrae were detected simultaneously to automatically establish a new coordinate system and eliminate the effect of posture change. The proposed model was developed by 59,468 VFSS frames collected from 1488 swallowing samples, and it achieved an average landmark localization error of 2.38 pixels (around 0.5% of the image with 448 × 448 pixels) and an average angle prediction error of 0.065 radians in predicting C2-C4 and hyoid bone angles. In addition, the displacement of the hyoid bone center was automatically tracked on a frame-by-frame analysis, achieving an average mean absolute error of 2.22 pixels and 2.78 pixels in the x-axis and y-axis, respectively. The results of this study support the effectiveness and accuracy of the proposed method in detecting hyoid bone displacement and rotation. Our study provided an automatic method of analyzing hyoid bone kinematics during VFSS, which could contribute to early diagnosis and effective disease management.
Collapse
Affiliation(s)
- Wuqi Li
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Shitong Mao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda S Mahoney
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ervin Sejdić
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
- North York General Hospital, Toronto, ON, Canada.
| |
Collapse
|
4
|
Anwar A, Khalifa Y, Lucatorto E, Coyle JL, Sejdic E. Swallowing Assessment using High-Resolution Cervical Auscultations and Transformer-based Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40040030 DOI: 10.1109/embc53108.2024.10782280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Swallowing assessment is a crucial task to reveal swallowing abnormalities. There are multiple modalities to analyze swallowing kinematics, such as videofluoroscopic swallow studies (VFSS), which is the gold standard method, and high-resolution cervical auscultation (HRCA), which is a noninvasive technique that uses a triaxial accelerometer attached to the patient's neck. Deep learning models play an essential role in data driven analysis of swallowing landmarks using VFSS and/or HRCA as input data. Most of these models utilize convolutional and recurrent neural networks. Here, we investigate the ability of transformers to analyze swallowing kinematics; specifically upper esophageal sphincter opening and laryngeal vestibule closure using HRCA signals. We tested the model using an independent test dataset to assess the generalizability of the proposed network. The proposed network achieved an average detection accuracy higher than 90% and 85% for both segmentation tasks, which outperform the hybrid neural networks from the literature, and the model obtained high-performance measures for the independent dataset, showing the transformers' ability to generalize on unseen data.
Collapse
|
5
|
Chen Z, Guo Y, Huo J, Hu X, Chen C, Gao D, Yang L, Wang C, Qu R. Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA): Influences on the Voice Changes and Swallowing Function Disorders. Surg Laparosc Endosc Percutan Tech 2023; 33:587-591. [PMID: 37852216 DOI: 10.1097/sle.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of transoral endoscopic thyroidectomy vestibular approach (TOETVA) on voice changes and swallowing function disorders. MATERIALS AND METHODS We retrospectively reviewed 215 patients who underwent thyroid surgery with TOETVA (105 cases, endoscopic group) and open approach (110 cases, open group). Major outcomes, the changes in voice and swallowing function in the 2 groups of patients before and after surgery were analyzed by using both subjective and objective evaluation indexes. Subjective evaluation indexes included the Voice Handicap Index, voice GRBAS (Grade, Roughness, Breathiness, Asthenia, Strain) classification, and swallowing impairment score; the objective indicators included the fundamental frequency (F0), fundamental frequency perturbation (jitter), amplitude perturbation (shimmer), and maximum phonation time. RESULTS In terms of subjective evaluation indexes, there were no significant differences (all P> 0.05) between the groups regarding Voice Handicap Index (1 and 3 mo after surgery) and GRBAS (1 and 3 mo after surgery). The incidence rates of swallowing disorder in the endoscopic group were higher than that in the open group according to the outcomes of swallowing impairment score at 1 and 3 months after surgery (both P< 0.05). In addition, no significant changes in terms of jitter, shimmer, and maximum phonation time in both groups of patients at 1 and 3 months after surgery compared with their preoperative values (all P> 0.05). CONCLUSIONS Voice and swallowing disorders may occur in some patients, either TOETVA or open thyroid surgery, which in most cases will recover within 3 months after surgery. The time to swallowing function recovery is relatively prolonged in patients following TOETVA, which may be probably associated with neck adhesion and fixation after the operation.
Collapse
Affiliation(s)
- Zongyi Chen
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Youming Guo
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Jinlong Huo
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Xiaochi Hu
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Chen Chen
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Dan Gao
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Li Yang
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| | - Cunchuan Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rui Qu
- Department of Thyroid Surgery, First People's Hospital of Zunyi/Third Affiliated Hospital of Zunyi Medical University, Zunyi
| |
Collapse
|
6
|
Mao S, Sejdic E. A Review of Recurrent Neural Network-Based Methods in Computational Physiology. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:6983-7003. [PMID: 35130174 PMCID: PMC10589904 DOI: 10.1109/tnnls.2022.3145365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Artificial intelligence and machine learning techniques have progressed dramatically and become powerful tools required to solve complicated tasks, such as computer vision, speech recognition, and natural language processing. Since these techniques have provided promising and evident results in these fields, they emerged as valuable methods for applications in human physiology and healthcare. General physiological recordings are time-related expressions of bodily processes associated with health or morbidity. Sequence classification, anomaly detection, decision making, and future status prediction drive the learning algorithms to focus on the temporal pattern and model the nonstationary dynamics of the human body. These practical requirements give birth to the use of recurrent neural networks (RNNs), which offer a tractable solution in dealing with physiological time series and provide a way to understand complex time variations and dependencies. The primary objective of this article is to provide an overview of current applications of RNNs in the area of human physiology for automated prediction and diagnosis within different fields. Finally, we highlight some pathways of future RNN developments for human physiology.
Collapse
|
7
|
Analysis of electrophysiological and mechanical dimensions of swallowing by non-invasive biosignals. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Khalifa Y, Mahoney AS, Lucatorto E, Coyle JL, Sejdić E. Non-Invasive Sensor-Based Estimation of Anterior-Posterior Upper Esophageal Sphincter Opening Maximal Distension. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:182-190. [PMID: 36873304 PMCID: PMC9976940 DOI: 10.1109/jtehm.2023.3246919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Dysphagia management relies on the evaluation of the temporospatial kinematic events of swallowing performed in videofluoroscopy (VF) by trained clinicians. The upper esophageal sphincter (UES) opening distension represents one of the important kinematic events that contribute to healthy swallowing. Insufficient distension of UES opening can lead to an accumulation of pharyngeal residue and subsequent aspiration which in turn can lead to adverse outcomes such as pneumonia. VF is usually used for the temporal and spatial evaluation of the UES opening; however, VF is not available in all clinical settings and may be inappropriate or undesirable for some patients. High resolution cervical auscultation (HRCA) is a noninvasive technology that uses neck-attached sensors and machine learning to characterize swallowing physiology by analyzing the swallow-induced vibrations/sounds in the anterior neck region. We investigated the ability of HRCA to noninvasively estimate the maximal distension of anterior-posterior (A-P) UES opening as accurately as the measurements performed by human judges from VF images. METHODS AND PROCEDURES Trained judges performed the kinematic measurement of UES opening duration and A-P UES opening maximal distension on 434 swallows collected from 133 patients. We used a hybrid convolutional recurrent neural network supported by attention mechanisms which takes HRCA raw signals as input and estimates the value of the A-P UES opening maximal distension as output. RESULTS The proposed network estimated the A-P UES opening maximal distension with an absolute percentage error of 30% or less for more than 64.14% of the swallows in the dataset. CONCLUSION This study provides substantial evidence for the feasibility of using HRCA to estimate one of the key spatial kinematic measurements used for dysphagia characterization and management. Clinical and Translational Impact Statement: The findings in this study have a direct impact on dysphagia diagnosis and management through providing a non-invasive and cheap way to estimate one of the most important swallowing kinematics, the UES opening distension, that contributes to safe swallowing. This study, along with other studies that utilize HRCA for swallowing kinematic analysis, paves the way for developing a widely available and easy-to-use tool for dysphagia diagnosis and management.
Collapse
Affiliation(s)
- Yassin Khalifa
- Department of Biomedical EngineeringCairo UniversityGiza12613Egypt
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of PittsburghPittsburghPA15260USA
- Case Western Reserve University School of MedicineClevelandOH44106USA
- University Hospitals Harrington Heart and Vascular InstituteClevelandOH44106USA
| | - Amanda S. Mahoney
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
| | - James L. Coyle
- Department of Communication Science and DisordersUniversity of PittsburghPittsburghPA15260USA
- Department of OtolaryngologyUniversity of PittsburghPittsburghPA15260USA
| | - Ervin Sejdić
- The Edward S. Rogers Sr. Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of TorontoTorontoONM5S 1A1Canada
- North York General HospitalTorontoONM2K 1E1Canada
| |
Collapse
|
9
|
Mialland A, Atallah I, Bonvilain A. Toward a robust swallowing detection for an implantable active artificial larynx: a survey. Med Biol Eng Comput 2023; 61:1299-1327. [PMID: 36792845 DOI: 10.1007/s11517-023-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/04/2023] [Indexed: 02/17/2023]
Abstract
Total laryngectomy consists in the removal of the larynx and is intended as a curative treatment for laryngeal cancer, but it leaves the patient with no possibility to breathe, talk, and swallow normally anymore. A tracheostomy is created to restore breathing through the throat, but the aero-digestive tracts are permanently separated and the air no longer passes through the nasal tracts, which allowed filtration, warming, humidification, olfaction, and acceleration of the air for better tissue oxygenation. As for phonation restoration, various techniques allow the patient to talk again. The main one consists of a tracheo-esophageal valve prosthesis that makes the air passes from the esophagus to the pharynx, and makes the air vibrate to allow speech through articulation. Finally, swallowing is possible through the original tract as it is now isolated from the trachea. Yet, many methods exist to detect and assess a swallowing, but none is intended as a definitive restoration technique of the natural airway, which would permanently close the tracheostomy and avoid its adverse effects. In addition, these methods are non-invasive and lack detection accuracy. The feasibility of an effective early detection of swallowing would allow to further develop an implantable active artificial larynx and therefore restore the aero-digestive tracts. A previous attempt has been made on an artificial larynx implanted in 2012, but no active detection was included and the system was completely mechanic. This led to residues in the airway because of the imperfect sealing of the mechanism. An active swallowing detection coupled with indwelling measurements would thus likely add a significant reliability on such a system as it would allow to actively close an artificial larynx. So, after a brief explanation of the swallowing mechanism, this survey intends to first provide a detailed consideration of the anatomical region involved in swallowing, with a detection perspective. Second, the swallowing mechanism following total laryngectomy surgery is detailed. Third, the current non-invasive swallowing detection technique and their limitations are discussed. Finally, the previous points are explored with regard to the inherent requirements for the feasibility of an effective swallowing detection for an artificial larynx. Graphical Abstract.
Collapse
Affiliation(s)
- Adrien Mialland
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France.
| | - Ihab Atallah
- Institute of Engineering and Management Univ. Grenoble Alpes, Otorhinolaryngology, CHU Grenoble Alpes, 38700, La Tronche, France
| | - Agnès Bonvilain
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France
| |
Collapse
|
10
|
Khalifa Y, Donohue C, Coyle JL, Sejdic E. Autonomous Swallow Segment Extraction Using Deep Learning in Neck-Sensor Vibratory Signals From Patients With Dysphagia. IEEE J Biomed Health Inform 2023; 27:956-967. [PMID: 36417738 PMCID: PMC10079637 DOI: 10.1109/jbhi.2022.3224323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dysphagia occurs secondary to a variety of underlying etiologies and can contribute to increased risk of adverse events such as aspiration pneumonia and premature mortality. Dysphagia is primarily diagnosed and characterized by instrumental swallowing exams such as videofluoroscopic swallowing studies. videofluoroscopic swallowing studies involve the inspection of a series of radiographic images for signs of swallowing dysfunction. Though effective, videofluoroscopic swallowing studies are only available in certain clinical settings and are not always desirable or feasible for certain patients. Because of the limitations of current instrumental swallow exams, research studies have explored the use of acceleration signals collected from neck sensors and demonstrated their potential in providing comparable radiation-free diagnostic value as videofluoroscopic swallowing studies. In this study, we used a hybrid deep convolutional recurrent neural network that can perform multi-level feature extraction (localized and across time) to annotate swallow segments automatically via multi-channel swallowing acceleration signals. In total, we used signals and videofluoroscopic swallowing study images of 3144 swallows from 248 patients with suspected dysphagia. Compared to other deep network variants, our network was superior at detecting swallow segments with an average area under the receiver operating characteristic curve value of 0.82 (95% confidence interval: 0.807-0.841), and was in agreement with up to 90% of the gold standard-labeled segments.
Collapse
|
11
|
Konradi J, Zajber M, Betz U, Drees P, Gerken A, Meine H. AI-Based Detection of Aspiration for Video-Endoscopy with Visual Aids in Meaningful Frames to Interpret the Model Outcome. SENSORS (BASEL, SWITZERLAND) 2022; 22:9468. [PMID: 36502169 PMCID: PMC9736280 DOI: 10.3390/s22239468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Disorders of swallowing often lead to pneumonia when material enters the airways (aspiration). Flexible Endoscopic Evaluation of Swallowing (FEES) plays a key role in the diagnostics of aspiration but is prone to human errors. An AI-based tool could facilitate this process. Recent non-endoscopic/non-radiologic attempts to detect aspiration using machine-learning approaches have led to unsatisfying accuracy and show black-box characteristics. Hence, for clinical users it is difficult to trust in these model decisions. Our aim is to introduce an explainable artificial intelligence (XAI) approach to detect aspiration in FEES. Our approach is to teach the AI about the relevant anatomical structures, such as the vocal cords and the glottis, based on 92 annotated FEES videos. Simultaneously, it is trained to detect boluses that pass the glottis and become aspirated. During testing, the AI successfully recognized the glottis and the vocal cords but could not yet achieve satisfying aspiration detection quality. While detection performance must be optimized, our architecture results in a final model that explains its assessment by locating meaningful frames with relevant aspiration events and by highlighting suspected boluses. In contrast to comparable AI tools, our framework is verifiable and interpretable and, therefore, accountable for clinical users.
Collapse
Affiliation(s)
- Jürgen Konradi
- Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Milla Zajber
- Department for Health Care & Nursing, Catholic University of Applied Sciences, 55122 Mainz, Germany
| | - Ulrich Betz
- Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Trauma Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Annika Gerken
- Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany
| | - Hans Meine
- Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany
| |
Collapse
|
12
|
Ariji Y, Gotoh M, Fukuda M, Watanabe S, Nagao T, Katsumata A, Ariji E. A preliminary deep learning study on automatic segmentation of contrast-enhanced bolus in videofluorography of swallowing. Sci Rep 2022; 12:18754. [PMID: 36335226 PMCID: PMC9637105 DOI: 10.1038/s41598-022-21530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Although videofluorography (VFG) is an effective tool for evaluating swallowing functions, its accurate evaluation requires considerable time and effort. This study aimed to create a deep learning model for automated bolus segmentation on VFG images of patients with healthy swallowing and dysphagia using the artificial intelligence deep learning segmentation method, and to assess the performance of the method. VFG images of 72 swallowing of 12 patients were continuously converted into 15 static images per second. In total, 3910 images were arbitrarily assigned to the training, validation, test 1, and test 2 datasets. In the training and validation datasets, images of colored bolus areas were prepared, along with original images. Using a U-Net neural network, a trained model was created after 500 epochs of training. The test datasets were applied to the trained model, and the performances of automatic segmentation (Jaccard index, Sørensen-Dice coefficient, and sensitivity) were calculated. All performance values for the segmentation of the test 1 and 2 datasets were high, exceeding 0.9. Using an artificial intelligence deep learning segmentation method, we automatically segmented the bolus areas on VFG images; our method exhibited high performance. This model also allowed assessment of aspiration and laryngeal invasion.
Collapse
Affiliation(s)
- Yoshiko Ariji
- grid.411253.00000 0001 2189 9594Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651 Japan ,grid.412378.b0000 0001 1088 0812Department of Oral Radiology, School of Dentistry, Osaka Dental University, Osaka, Japan
| | - Masakazu Gotoh
- grid.411253.00000 0001 2189 9594Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651 Japan
| | - Motoki Fukuda
- grid.411253.00000 0001 2189 9594Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651 Japan
| | - Satoshi Watanabe
- grid.411253.00000 0001 2189 9594Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Toru Nagao
- grid.411253.00000 0001 2189 9594Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Akitoshi Katsumata
- grid.411456.30000 0000 9220 8466Department of Oral Radiology, Asahi University School of Dentistry, Mizuho, Japan
| | - Eiichiro Ariji
- grid.411253.00000 0001 2189 9594Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya, 464-8651 Japan
| |
Collapse
|
13
|
Shu K, Mao S, Coyle JL, Sejdic E. Improving Non-Invasive Aspiration Detection With Auxiliary Classifier Wasserstein Generative Adversarial Networks. IEEE J Biomed Health Inform 2022; 26:1263-1272. [PMID: 34415842 PMCID: PMC8942096 DOI: 10.1109/jbhi.2021.3106565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aspiration is a serious complication of swallowing disorders. Adequate detection of aspiration is essential in dysphagia management and treatment. High-resolution cervical auscultation has been increasingly considered as a promising noninvasive swallowing screening tool and has inspired automatic diagnosis with advanced algorithms. The performance of such algorithms relies heavily on the amount of training data. However, the practical collection of cervical auscultation signal is an expensive and time-consuming process because of the clinical settings and trained experts needed for acquisition and interpretations. Furthermore, the relatively infrequent incidence of severe airway invasion during swallowing studies constrains the performance of machine learning models. Here, we produced supplementary training exemplars for desired class by capturing the underlying distribution of original cervical auscultation signal features using auxiliary classifier Wasserstein generative adversarial networks. A 10-fold subject cross-validation was conducted on 2079 sets of 36-dimensional signal features collected from 189 patients undergoing swallowing examinations. The proposed data augmentation outperforms basic data sampling, cost-sensitive learning and other generative models with significant enhancement. This demonstrates the remarkable potential of proposed network in improving classification performance using cervical auscultation signals and paves the way of developing accurate noninvasive swallowing evaluation in dysphagia care.
Collapse
|
14
|
Swallowing kinematic analysis might be helpful in predicting aspiration and pyriform sinus stasis. Sci Rep 2022; 12:1354. [PMID: 35079109 PMCID: PMC8789786 DOI: 10.1038/s41598-022-05441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Aspiration due to dysphagia can lead to aspiration, which negatively impacts a patient’s overall prognosis. Clinically, videofluoroscopic swallow study (VFSS) is considered the gold-standard instrument to determine physiological impairments of swallowing. According to previously published literature, kinematic analyses of VFSS might provide further information regarding aspiration detection. In this study, 449 files of VFSS studies from 232 patients were divided into three groups: normal, aspiration, and pyriform sinus stasis. Kinematic analyses and between-group comparison were conducted. Significant between-group differences were noted among parameters of anterior hyoid displacement, maximal hyoid displacement, and average velocity of hyoid movement. No significant difference was detected in superior hyoid displacement. Furthermore, receiver-operating characteristic (ROC) analyses of anterior hyoid displacement, velocity of anterior hyoid displacement, and average velocity of maximal hyoid displacement showed acceptable predictability for detecting aspiration. Using 33.0 mm/s as a cutoff value of average velocity of maximal hyoid displacement, the sensitivity of detecting the presence of aspiration was near 90%. The investigators therefore propose that the average velocity of maximal hyoid displacement may serve as a potential screening tool to detect aspiration.
Collapse
|
15
|
Schwartz R, Khalifa Y, Lucatorto E, Perera S, Coyle J, Sejdic E. A Preliminary Investigation of Similarities of High Resolution Cervical Auscultation Signals Between Thin Liquid Barium and Water Swallows. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4900109. [PMID: 34963825 PMCID: PMC8694539 DOI: 10.1109/jtehm.2021.3134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Dysphagia, commonly referred to as abnormal swallowing, affects millions of people annually. If not diagnosed expeditiously, dysphagia can lead to more severe complications, such as pneumonia, nutritional deficiency, and dehydration. Bedside screening is the first step of dysphagia characterization and is usually based on pass/fail tests in which a nurse observes the patient performing water swallows to look for dysphagia overt signs such as coughing. Though quick and convenient, bedside screening only provides low-level judgment of impairment, lacks standardization, and suffers from subjectivity. Recently, high resolution cervical auscultation (HRCA) has been investigated as a less expensive and non-invasive method to diagnose dysphagia. It has shown strong preliminary evidence of its effectiveness in penetration-aspiration detection as well as multiple swallow kinematics. HRCA signals have traditionally been collected and investigated in conjunction with videofluoroscopy exams which are performed using barium boluses including thin liquid. An HRCA-based bedside screening is highly desirable to expedite the initial dysphagia diagnosis and overcome all the drawbacks of the current pass/fail screening tests. However, all research conducted for using HRCA in dysphagia is based on thin liquid barium boluses and thus not guaranteed to provide valid results for water boluses used in bedside screening. If HRCA signals show no significant differences between water and thin liquid barium boluses, then the same algorithms developed on thin liquid barium boluses used in diagnostic imaging studies, it can be then directly used with water boluses. This study investigates the similarities and differences between HRCA signals from thin liquid barium swallows compared to those signals from water swallows. Multiple features from the time, frequency, time-frequency, and information-theoretic domain were extracted from each type of swallow and a group of linear mixed models was tested to determine the significance of differences. Machine learning classifiers were fit to the data as well to determine if the swallowed material (thin liquid barium or water) can be correctly predicted from an unlabeled set of HRCA signals. The results demonstrated that there is no systematic difference between the HRCA signals of thin liquid barium swallows and water swallows. While no systematic difference was discovered, the evidence of complete conformity between HRCA signals of both materials was inconclusive. These results must be validated further to confirm conformity between the HRCA signals of thin liquid barium swallows and water swallows.
Collapse
Affiliation(s)
- Ryan Schwartz
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Yassin Khalifa
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - Erin Lucatorto
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Subashan Perera
- Division of Geriatric MedicineDepartment of MedicineUniversity of Pittsburgh Pittsburgh PA 15261 USA
| | - James Coyle
- Department of Communication Science and DisordersSchool of Health and Rehabilitation SciencesUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Ervin Sejdic
- Department of Electrical and Computer EngineeringSwanson School of EngineeringUniversity of Pittsburgh Pittsburgh PA 15261 USA
- The Edward S. Rogers Department of Electrical and Computer EngineeringFaculty of Applied Science and EngineeringUniversity of Toronto Toronto ON M5S 2E4 Canada
- North York General Hospital Toronto ON M2K 1E1 Canada
| |
Collapse
|
16
|
Real-Time Tracking of Human Neck Postures and Movements. Healthcare (Basel) 2021; 9:healthcare9121755. [PMID: 34946481 PMCID: PMC8702106 DOI: 10.3390/healthcare9121755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Improper neck postures and movements are the major causes of human neck-related musculoskeletal disorders. To monitor, quantify, analyze, and detect the movements, remote and non-invasive based methods are being developed for prevention and rehabilitation. The purpose of this research is to provide a digital platform for analyzing the impact of human neck movements on the neck musculoskeletal system. The secondary objective is to design a rehabilitation monitoring system that brings accountability in the treatment prescribed, which is shown in the use-case model. To record neck movements effectively, a Smart Neckband integrated with the Inertial Measurement Unit (IMU) was designed. The initial task was to find a suitable position to locate the sensors embedded in the Smart Neckband. IMU-based real-world kinematic data were captured from eight research subjects and were used to extract kinetic data from the OpenSim simulation platform. A Random Forest algorithm was trained using the kinetic data to predict the neck movements. The results obtained correlated with the novel idea proposed in this paper of using the hyoid muscles to accurately detect neck postures and movements. The innovative approach of integrating kinematic data and kinetic data for analyzing neck postures and movements has been successfully demonstrated through the efficient application in a rehabilitation use case with about 95% accuracy. This research study presents a robust digital platform for the integration of kinematic and kinetic data that has enabled the design of a context-aware neckband for the support in the treatment of neck musculoskeletal disorders.
Collapse
|
17
|
Characterizing Effortful Swallows from Healthy Community Dwelling Adults Across the Lifespan Using High-Resolution Cervical Auscultation Signals and MBSImP Scores: A Preliminary Study. Dysphagia 2021; 37:1103-1111. [PMID: 34537905 PMCID: PMC8449695 DOI: 10.1007/s00455-021-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
There is growing enthusiasm to develop inexpensive, non-invasive, and portable methods that accurately assess swallowing and provide biofeedback during dysphagia treatment. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from non-invasive sensors attached to the anterior laryngeal framework during swallowing, is a novel method for quantifying swallowing physiology via advanced signal processing and machine learning techniques. HRCA has demonstrated potential as a dysphagia screening method and diagnostic adjunct to VFSSs by determining swallowing safety, annotating swallow kinematic events, and classifying swallows between healthy participants and patients with a high degree of accuracy. However, its feasibility as a non-invasive biofeedback system has not been explored. This study investigated 1. Whether HRCA can accurately differentiate between non-effortful and effortful swallows; 2. Whether differences exist in Modified Barium Swallow Impairment Profile (MBSImP) scores (#9, #11, #14) between non-effortful and effortful swallows. We hypothesized that HRCA would accurately classify non-effortful and effortful swallows and that differences in MBSImP scores would exist between the types of swallows. We analyzed 247 thin liquid 3 mL command swallows (71 effortful) to minimize variation from 36 healthy adults who underwent standardized VFSSs with concurrent HRCA. Results revealed differences (p < 0.05) in 9 HRCA signal features between non-effortful and effortful swallows. Using HRCA signal features as input, decision trees classified swallows with 76% accuracy, 76% sensitivity, and 77% specificity. There were no differences in MBSImP component scores between non-effortful and effortful swallows. While preliminary in nature, this study demonstrates the feasibility/promise of HRCA as a biofeedback method for dysphagia treatment.
Collapse
|
18
|
Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Characterizing Swallows From People With Neurodegenerative Diseases Using High-Resolution Cervical Auscultation Signals and Temporal and Spatial Swallow Kinematic Measurements. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3416-3431. [PMID: 34428093 PMCID: PMC8642099 DOI: 10.1044/2021_jslhr-21-00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Purpose The prevalence of dysphagia in patients with neurodegenerative diseases (ND) is alarmingly high and frequently results in morbidity and accelerated mortality due to subsequent adverse events (e.g., aspiration pneumonia). Swallowing in patients with ND should be continuously monitored due to the progressive disease nature. Access to instrumental swallow evaluations can be challenging, and limited studies have quantified changes in temporal/spatial swallow kinematic measures in patients with ND. High-resolution cervical auscultation (HRCA), a dysphagia screening method, has accurately differentiated between safe and unsafe swallows, identified swallow kinematic events (e.g., laryngeal vestibule closure [LVC]), and classified swallows between healthy adults and patients with ND. This study aimed to (a) compare temporal/spatial swallow kinematic measures between patients with ND and healthy adults and (b) investigate HRCA's ability to annotate swallow kinematic events in patients with ND. We hypothesized there would be significant differences in temporal/spatial swallow measurements between groups and that HRCA would accurately annotate swallow kinematic events in patients with ND. Method Participants underwent videofluoroscopic swallowing studies with concurrent HRCA. We used linear mixed models to compare temporal/spatial swallow measurements (n = 170 ND patient swallows, n = 171 healthy adult swallows) and deep learning machine-learning algorithms to annotate specific temporal and spatial kinematic events in swallows from patients with ND. Results Differences (p < .05) were found between groups for several temporal and spatial swallow kinematic measures. HRCA signal features were used as input to machine-learning algorithms and annotated upper esophageal sphincter (UES) opening, UES closure, LVC, laryngeal vestibule reopening, and hyoid bone displacement with 66.25%, 85%, 68.18%, 70.45%, and 44.6% accuracy, respectively, compared to human judges' measurements. Conclusion This study demonstrates HRCA's potential in characterizing swallow function in patients with ND and other patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, PA
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA
| | - James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh Medical Center, PA
| |
Collapse
|
19
|
Donohue C, Khalifa Y, Mao S, Perera S, Sejdić E, Coyle JL. Establishing Reference Values for Temporal Kinematic Swallow Events Across the Lifespan in Healthy Community Dwelling Adults Using High-Resolution Cervical Auscultation. Dysphagia 2021; 37:664-675. [PMID: 34018024 DOI: 10.1007/s00455-021-10317-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Few research studies have investigated temporal kinematic swallow events in healthy adults to establish normative reference values. Determining cutoffs for normal and disordered swallowing is vital for differentially diagnosing presbyphagia, variants of normal swallowing, and dysphagia; and for ensuring that different swallowing research laboratories produce consistent results in common measurements from different samples within the same population. High-resolution cervical auscultation (HRCA), a sensor-based dysphagia screening method, has accurately annotated temporal kinematic swallow events in patients with dysphagia, but hasn't been used to annotate temporal kinematic swallow events in healthy adults to establish dysphagia screening cutoffs. This study aimed to determine: (1) Reference values for temporal kinematic swallow events, (2) Whether HRCA can annotate temporal kinematic swallow events in healthy adults. We hypothesized (1) Our reference values would align with a prior study; (2) HRCA would detect temporal kinematic swallow events as accurately as human judges. Trained judges completed temporal kinematic measurements on 659 swallows (N = 70 adults). Swallow reaction time and LVC duration weren't different (p > 0.05) from a previously published historical cohort (114 swallows, N = 38 adults), while other temporal kinematic measurements were different (p < 0.05), suggesting a need for further standardization to feasibly pool data analyses across laboratories. HRCA signal features were used as input to machine learning algorithms and annotated UES opening (69.96% accuracy), UES closure (64.52% accuracy), LVC (52.56% accuracy), and LV re-opening (69.97% accuracy); providing preliminary evidence that HRCA can noninvasively and accurately annotate temporal kinematic measurements in healthy adults to determine dysphagia screening cutoffs.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA. .,Department of Otolaryngology, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Shu K, Coyle JL, Perera S, Khalifa Y, Sabry A, Sejdić E. Anterior-posterior distension of maximal upper esophageal sphincter opening is correlated with high-resolution cervical auscultation signal features. Physiol Meas 2021; 42. [PMID: 33601360 DOI: 10.1088/1361-6579/abe7cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Objective. Adequate upper esophageal sphincter (UES) opening is essential during swallowing to enable clearance of material into the digestive system, and videofluoroscopy (VF) is the most commonly deployed instrumental examination for assessment of UES opening. High-resolution cervical auscultation (HRCA) has been shown to be an effective, portable and cost-efficient screening tool for dysphagia with strong capabilities in non-invasively and accurately approximating manual measurements of VF images. In this study, we aimed to examine whether the HRCA signals are correlated to the manually measured anterior-posterior (AP) distension of maximal UES opening from VF recordings, under the hypothesis that they would be strongly associated.Approach. We developed a standardized method to spatially measure the AP distension of maximal UES opening in 203 swallows VF recording from 27 patients referred for VF due to suspected dysphagia. Statistical analysis was conducted to compare the manually measured AP distension of maximal UES opening from lateral plane VF images and features extracted from two sets of HRCA signal segments: whole swallow segments and segments excluding all events other than the duration of UES is opening.Main results. HRCA signal features were significantly associated with the normalized AP distension of the maximal UES opening in the longer whole swallowing segments and the association became much stronger when analysis was performed solely during the duration of UES opening.Significance. This preliminary feasibility study demonstrated the potential value of HRCA signals features in approximating the objective measurements of maximal UES AP distension and paves the way of developing HRCA to non-invasively and accurately predict human spatial measurement of VF kinematic events.
Collapse
Affiliation(s)
- Kechen Shu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, Department of Otolaryngology, School of Medicine, University of Pittsburgh, PA, 15260, United States of America
| | - Subashan Perera
- Division of Geriatrics, Department of Medecine, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Aliaa Sabry
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA, 15260, United States of America
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical informatics, School of Medecine, Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA, 15260, United States of America
| |
Collapse
|
21
|
Khalifa Y, Donohue C, Coyle JL, Sejdic E. Upper Esophageal Sphincter Opening Segmentation With Convolutional Recurrent Neural Networks in High Resolution Cervical Auscultation. IEEE J Biomed Health Inform 2021; 25:493-503. [PMID: 32750928 DOI: 10.1109/jbhi.2020.3000057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upper esophageal sphincter is an important anatomical landmark of the swallowing process commonly observed through the kinematic analysis of radiographic examinations that are vulnerable to subjectivity and clinical feasibility issues. Acting as the doorway of esophagus, upper esophageal sphincter allows the transition of ingested materials from pharyngeal into esophageal stages of swallowing and a reduced duration of opening can lead to penetration/aspiration and/or pharyngeal residue. Therefore, in this study we consider a non-invasive high resolution cervical auscultation-based screening tool to approximate the human ratings of upper esophageal sphincter opening and closure. Swallows were collected from 116 patients and a deep neural network was trained to produce a mask that demarcates the duration of upper esophageal sphincter opening. The proposed method achieved more than 90% accuracy and similar values of sensitivity and specificity when compared to human ratings even when tested over swallows from an independent clinical experiment. Moreover, the predicted opening and closure moments surprisingly fell within an inter-human comparable error of their human rated counterparts which demonstrates the clinical significance of high resolution cervical auscultation in replacing ionizing radiation-based evaluation of swallowing kinematics.
Collapse
|
22
|
Mao S, Sabry A, Khalifa Y, Coyle JL, Sejdic E. Estimation of laryngeal closure duration during swallowing without invasive X-rays. FUTURE GENERATIONS COMPUTER SYSTEMS : FGCS 2021; 115:610-618. [PMID: 33100445 PMCID: PMC7584133 DOI: 10.1016/j.future.2020.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laryngeal vestibule (LV) closure is a critical physiologic event during swallowing, since it is the first line of defense against food bolus entering the airway. Identifying the laryngeal vestibule status, including closure, reopening and closure duration, provides indispensable references for assessing the risk of dysphagia and neuromuscular function. However, commonly used radiographic examinations, known as videofluoroscopy swallowing studies, are highly constrained by their radiation exposure and cost. Here, we introduce a non-invasive sensor-based system, that acquires high-resolution cervical auscultation signals from neck and accommodates advanced deep learning techniques for the detection of LV behaviors. The deep learning algorithm, which combined convolutional and recurrent neural networks, was developed with a dataset of 588 swallows from 120 patients with suspected dysphagia and further clinically tested on 45 samples from 16 healthy participants. For classifying the LV closure and opening statuses, our method achieved 78.94% and 74.89% accuracies for these two datasets, suggesting the feasibility of implementing sensor signals for LV prediction without traditional videofluoroscopy screening methods. The sensor supported system offers a broadly applicable computational approach for clinical diagnosis and biofeedback purposes in patients with swallowing disorders without the use of radiographic examination.
Collapse
Affiliation(s)
- Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Aliaa Sabry
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Department of Bioengineering, Swanson School of Engineering Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
23
|
Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. How Closely do Machine Ratings of Duration of UES Opening During Videofluoroscopy Approximate Clinician Ratings Using Temporal Kinematic Analyses and the MBSImP? Dysphagia 2020; 36:707-718. [PMID: 32955619 DOI: 10.1007/s00455-020-10191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Clinicians evaluate swallow kinematic events by analyzing videofluoroscopy (VF) images for dysphagia management. The duration of upper esophageal sphincter opening (DUESO) is one important temporal swallow event, because reduced DUESO can result in pharyngeal residue and penetration/aspiration. VF is frequently used for evaluating swallowing but exposes patients to radiation and is not always feasible/readily available. High resolution cervical auscultation (HRCA) is a non-invasive, sensor-based dysphagia screening method that uses signal processing and machine learning to characterize swallowing. We investigated HRCA's ability to annotate DUESO and predict Modified Barium Swallow Impairment Profile (MBSImP) scores (component #14). We hypothesized that HRCA and machine learning techniques would detect DUESO with similar accuracy as human judges. Trained judges completed temporal kinematic measurements of DUESO on 719 swallows (116 patients) and 50 swallows (15 age-matched healthy adults). An MBSImP certified clinician completed MBSImP ratings on 100 swallows. A multi-layer convolutional recurrent neural network (CRNN) using HRCA signal features for input was used to detect DUESO. Generalized estimating equations models were used to determine statistically significant HRCA signal features for predicting DUESO MBSImP scores. A support vector machine (SVM) classifier and a leave-one-out procedure was used to predict DUESO MBSImP scores. The CRNN detected UES opening within a 3-frame tolerance for 82.6% of patient and 86% of healthy swallows and UES closure for 72.3% of patient and 64% of healthy swallows. The SVM classifier predicted DUESO MBSImP scores with 85.7% accuracy. This study provides evidence of HRCA's feasibility in detecting DUESO without VF images.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
24
|
Donohue C, Khalifa Y, Perera S, Sejdić E, Coyle JL. A Preliminary Investigation of Whether HRCA Signals Can Differentiate Between Swallows from Healthy People and Swallows from People with Neurodegenerative Diseases. Dysphagia 2020; 36:635-643. [PMID: 32889627 DOI: 10.1007/s00455-020-10177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
High-resolution cervical auscultation (HRCA) is an emerging method for non-invasively assessing swallowing by using acoustic signals from a contact microphone, vibratory signals from an accelerometer, and advanced signal processing and machine learning techniques. HRCA has differentiated between safe and unsafe swallows, predicted components of the Modified Barium Swallow Impairment Profile, and predicted kinematic events of swallowing such as hyoid bone displacement, laryngeal vestibular closure, and upper esophageal sphincter opening with a high degree of accuracy. However, HRCA has not been used to characterize swallow function in specific patient populations. This study investigated the ability of HRCA to differentiate between swallows from healthy people and people with neurodegenerative diseases. We hypothesized that HRCA would differentiate between swallows from healthy people and people with neurodegenerative diseases with a high degree of accuracy. We analyzed 170 swallows from 20 patients with neurodegenerative diseases and 170 swallows from 51 healthy age-matched adults who underwent concurrent video fluoroscopy with non-invasive neck sensors. We used a linear mixed model and several supervised machine learning classifiers that use HRCA signal features and a leave-one-out procedure to differentiate between swallows. Twenty-two HRCA signal features were statistically significant (p < 0.05) for predicting whether swallows were from healthy people or from patients with neurodegenerative diseases. Using the HRCA signal features alone, logistic regression and decision trees classified swallows between the two groups with 99% accuracy, 100% sensitivity, and 99% specificity. This provides preliminary research evidence that HRCA can differentiate swallow function between healthy and patient populations.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| | - Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Subashan Perera
- Division of Geriatrics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| |
Collapse
|
25
|
SejdiĆ E, Khalifa Y, Mahoney AS, Coyle JL. ARTIFICIAL INTELLIGENCE AND DYSPHAGIA: NOVEL SOLUTIONS TO OLD PROBLEMS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:343-346. [PMID: 33331470 DOI: 10.1590/s0004-2803.202000000-66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dysphagia management, from screening procedures to diagnostic methods and therapeutic approaches, is about to change dramatically. This change is prompted not solely by great discoveries in medicine or physiology, but by advances in electronics and data science and close collaboration and cross-pollination between these two disciplines. In this editorial, we will provide a brief overview of the role of artificial intelligence in dysphagia management.
Collapse
Affiliation(s)
- Ervin SejdiĆ
- University of Pittsburgh, Department of Electrical and Computer Engineering, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Biomedical Informatics, School of Medicine, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Intelligent Systems Program, School of Computing and Information, Pittsburgh, Pennsylvania, United States
| | - Yassin Khalifa
- University of Pittsburgh, Department of Electrical and Computer Engineering, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States
| | - Amanda S Mahoney
- University of Pittsburgh, Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, Pittsburgh, Pennsylvania, United States
| | - James L Coyle
- University of Pittsburgh, Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, Pittsburgh, Pennsylvania, United States
- University of Pittsburgh, Department of Otolaryngology, School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
26
|
Coyle JL, Sejdić E. High-Resolution Cervical Auscultation and Data Science: New Tools to Address an Old Problem. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:992-1000. [PMID: 32650655 PMCID: PMC7844341 DOI: 10.1044/2020_ajslp-19-00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
High-resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of dysphagia that relies on data science, machine learning, and wearable sensors to investigate the characteristics of disordered swallowing function in people with dysphagia. HRCA has shown promising results in categorizing normal and disordered swallowing (i.e., screening) independent of human input, identifying a variety of swallowing physiological events as accurately as trained human judges. The system has been developed through a collaboration of data scientists, computer-electrical engineers, and speech-language pathologists. Its potential to automate dysphagia screening and contribute to evaluation lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data. Potential contributions of HRCA when videofluoroscopic swallowing study may be unavailable, undesired, or not feasible for many patients in various settings are discussed, along with the development and capabilities of HRCA. The use of technological advances and wearable devices can extend the dysphagia clinician's reach and reinforce top-of-license practice for patients with swallowing disorders.
Collapse
Affiliation(s)
- James L. Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, PA
- Department of Otolaryngology, School of Medicine, University of Pittsburgh, PA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA
| |
Collapse
|
27
|
Caliskan H, Mahoney AS, Coyle JL, Sejdic E. Automated Bolus Detection in Videofluoroscopic Images of Swallowing Using Mask-RCNN. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2173-2177. [PMID: 33018437 DOI: 10.1109/embc44109.2020.9176664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tracking a liquid or food bolus in videofluoroscopic images during X-ray based diagnostic swallowing examinations is a dominant clinical approach to assess human swallowing function during oral, pharyngeal and esophageal stages of swallowing. This tracking represents a highly challenging problem for clinicians as swallowing is a rapid action. Therefore, we developed a computer-aided method to automate bolus detection and tracking in order to alleviate issues associated with human factors. Specifically, we applied a stateof-the-art deep learning model called Mask-RCNN to detect and segment the bolus in videofluoroscopic image sequences. We trained the algorithm with 450 swallow videos and evaluated with an independent dataset of 50 videos. The algorithm was able to detect and segment the bolus with a mean average precision of 0.49 and an intersection of union of 0.71. The proposed method indicated robust detection results that can help to improve the speed and accuracy of a clinical decisionmaking process.
Collapse
|
28
|
Khalifa Y, Coyle JL, Sejdić E. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings. Sci Rep 2020; 10:8704. [PMID: 32457331 PMCID: PMC7251089 DOI: 10.1038/s41598-020-65492-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in comparison to the existing algorithms and demonstrated its generalizability when tested over 76 completely unseen swallows from a different population. The proposed method is not only of great importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such signals can capture the physiological signature of the swallowing process.
Collapse
Affiliation(s)
- Yassin Khalifa
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Donohue C, Mao S, Sejdić E, Coyle JL. Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals. Dysphagia 2020; 36:259-269. [PMID: 32419103 DOI: 10.1007/s00455-020-10124-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Identifying physiological impairments of swallowing is essential for determining accurate diagnosis and appropriate treatment for patients with dysphagia. The hyoid bone is an anatomical landmark commonly monitored during analysis of videofluoroscopic swallow studies (VFSSs). Its displacement is predictive of penetration/aspiration and is associated with other swallow kinematic events. However, VFSSs are not always readily available/feasible and expose patients to radiation. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from a microphone and tri-axial accelerometer, is under investigation as a non-invasive dysphagia screening method and potential adjunct to VFSS when it is unavailable or not feasible. We investigated the ability of HRCA to independently track hyoid bone displacement during swallowing with similar accuracy to VFSS, by analyzing vibratory signals from a tri-axial accelerometer using machine learning techniques. We hypothesized HRCA would track hyoid bone displacement with a high degree of accuracy compared to humans. Trained judges completed frame-by-frame analysis of hyoid bone displacement on 400 swallows from 114 patients and 48 swallows from 16 age-matched healthy adults. Extracted features from vibratory signals were used to train the predictive algorithm to generate a bounding box surrounding the hyoid body on each frame. A metric of relative overlapped percentage (ROP) compared human and machine ratings. The mean ROP for all swallows analyzed was 50.75%, indicating > 50% of the bounding box containing the hyoid bone was accurately predicted in every frame. This provides evidence of the feasibility of accurate, automated hyoid bone displacement tracking using HRCA signals without use of VFSS images.
Collapse
Affiliation(s)
- Cara Donohue
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA
| | - Shitong Mao
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ervin Sejdić
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Department of Bioengineering, Swanson School of Engineering, Department of Biomedical Informatics, School of Medicine Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James L Coyle
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA.
| |
Collapse
|