1
|
Aldaby ESE, Danial AW, Abdel-Basset R. Photosynthesizing carbonate/nitrate into Chlorococcum humicola biomass for biodiesel and Bacillus coagulans-based biohydrogen production. Microb Cell Fact 2024; 23:247. [PMID: 39261831 PMCID: PMC11391666 DOI: 10.1186/s12934-024-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Biofuel can be generated by different organisms using various substrates. The green alga Chlorococcum humicola OQ934050 exhibited the capability to photosynthesize carbonate carbon, maybe via the activity of carbonic anhydrase enzymes. The optimum treatment is C:N ratio of 1:1 (0.2 mmoles sodium carbonate and 0.2 mmoles sodium nitrate) as it induced the highest dry mass (more than 0.5Â mg.mL-1). At this combination, biomass were about 0.2Â mg/mL-1 carbohydrates, 0.085Â mg/mL-1 proteins, and 0.16Â mg/mL-1 oil of this dry weight. The C/N ratios of 1:1 or 10:1 induced up to 30% of the Chlorococcum humicola dry mass as oils. Growth and dry matter content were hindered at 50:1 C/N and oil content was reduced as a result. The fatty acid profile was strongly altered by the applied C.N ratios. The defatted leftovers of the grown alga, after oil extraction, were fermented by a newly isolated heterotrophic bacterium, identified as Bacillus coagulans OQ053202, to evolve hydrogen content as gas. The highest cumulative hydrogen production and reducing sugar (70Â ml H2/g biomass and 0.128Â mg/ml; respectively) were found at the C/N ratio of 10:1 with the highest hydrogen evolution efficiency (HEE) of 22.8Â ml H2/ mg reducing sugar. The optimum treatment applied to the Chlorococcum humicola is C:N ratio of 1:1 for the highest dry mass, up to 30% dry mass as oils. Some fatty acids were induced while others disappeared, depending on the C/N ratios. The highest cumulative hydrogen production and reducing sugar were found at the C/N ratio of 10:1.
Collapse
Affiliation(s)
- Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - R Abdel-Basset
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Rana S, Kumar A. Effect of long-term exposure of mixture of ZnO and CuO nanoparticles on Scenedesmus obliquus. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1233-1246. [PMID: 38040998 DOI: 10.1007/s10646-023-02710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/03/2023]
Abstract
The present study investigated the possible toxic effect of ZnO and CuO nanoparticles (NPs) on freshwater microalgae, Scenedesmus obliquus at environmentally- relevant nanoparticle concentration (1 mg/L) and high concentration (10 mg/L) in BG-11 medium under white light LED-illumination over 35 days. The effect of time on the stability of media, nanoparticles, and their relation to toxicity to algae was also studied. The transmission electron microscopy indicated structural damage to algae due to the presence of a mixture of nanoparticles (at 10 mg/L). FTIR (Fourier Transform infrared) analysis of a sample containing a mixture of nanoparticles showed an addition of bonds and a difference in the peak location and its intensity values. The inhibition time for biomass was observed between 14 days and 21 days at 10 mg/L NPs. At 1 mg/L, the order of toxicity of NPs to algae was found to be: CuO NPs (highest toxicity) > ZnO NPs>ZnO + CuO NPs (least toxicity). During exposure of algae cells to a mixture of NPs at 10 mg/L NP concentration, a smaller value of metal deposition was observed than that during exposure to individual NPs. Antagonistic toxic effects of two NPs on dry cell weight of algae was observed at both concentration levels. Future work is needed to understand the steps involved in toxicity due to mixture of NPs to algae so that environmental exposures of algae to NPs can be managed and minimized.
Collapse
Affiliation(s)
- Samridhi Rana
- Graduate Student, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Professor, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
3
|
Sharma S, Kant A, Sevda S, Aminabhavi TM, Garlapati VK. A waste-based circular economy approach for phycoremediation of X-ray developer solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120530. [PMID: 36341826 DOI: 10.1016/j.envpol.2022.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A waste-based circular economy approach is proposed for the phycoremediation of an X-ray developer (XD) solution. The present study emphasizes the utilization of food waste (FW) and agri-compost media (ACM) as growth media for D. armatus for the subsequent bioremediation potential of XD solution-coupled lipid production. A 3:1 dilution (FW/ACM: XD.) was found to be suitable for the phycoremediation study of XD solution towards the % removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and silver. The phycoremediation studies of diluted XD solution in FW demonstrated a 74.50% BOD removal, 81.69% COD removal, and 54.70% removal of silver. The growth of D. armatus in diluted XD solution in food waste was 1.37% lipid content. The phycoremediation of diluted XD solution with ACM resulted in 83.05% BOD removal, 88.88% COD removal and 56.30% silver removal with the concomitant lipid production of 1.42%. The optimal bioremediation coupled lipid production of D. armatus was observed on the 19th day of D. armatus cultivation in the developer effluent, along with food waste and agri-compost media, for 31 days. The study suggests a sustainable utilization of waste (FW and ACM) as a nutritive medium to scrutinize the phycoremediation of XD solution with a concomitant lipid production that can open up new avenues in phycoremediation coupled energy commodities production.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information and Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information and Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506 004, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information and Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India.
| |
Collapse
|
4
|
The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. WATER 2022. [DOI: 10.3390/w14050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, the capacity of wastewater from an inland fishery system in Colombia (Norte de Santander) was tested as culture medium for Chlorella sp. and Scenedesmus sp. Due to insufficient N and P concentrations for successful algae growth, the effect of wastewater replenishment with NO3, PO4, and Na2CO3 or NaHCO3 as a carbon source was analyzed using a three-factor nonfactorial response surface design. The results showed that the addition of NaNO3 (0.125 g/L), K2HPO4 (0.075 g/L), KH2PO4 (0.75 g/L), and NaHCO3 (0.5 and 2 g/L for Chlorella sp. and Scenedesmus sp. respectively) significantly increased the biomass of Chlorella sp. (0.87 g/L) and Scenedesmus sp. (0.83 g/L). Although these results show that the addition of other nutrients is not necessary (Na, Mg, SO4, Ca, etc.), it is still essential to determine the quality of the biomass produced in terms of its application as a feed supplement for fish production.
Collapse
|
5
|
Wu S, Ji X, Li X, Ye J, Xu W, Wang R, Hou M. Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and Microcystis aeruginosa in synthetic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3994-4007. [PMID: 34402007 DOI: 10.1007/s11356-021-15627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The physiological impacts and interactions of antibiotic resistance gene (ARG) abundance, microcystin synthetase gene expression, graphene oxide (GO), and Microcystis aeruginosa in synthetic wastewater were investigated. The results demonstrated that the absolute abundance of sul1, sul2, tetW, and tetM in synthetic wastewater dramatically increased to 365.2%, 427.1%, 375.2%, and 231.7%, respectively, when the GO concentration was 0.01 mg/L. Even more interesting is that the sum gene copy numbers of mcyA-J also increased to 243.2%. The appearance of GO made the significant correlation exist between ARGs abundance and mcyA-J expression. Furthermore, M. aeruginosa displayed better photosynthetic performance and more MCs production at 0.01 mg/L GO. There were 65 pairs of positive correlations between the intracellular differential metabolites of M. aeruginosa and the abundance of sul1, sul2, tetM, and tetW with various GO concentrations. The GO will impact the metabolites and metabolic pathway in M. aeruginosa. The metabolic changes impacted the ARGs, microcystin synthetase genes, and physiological characters in algal cells. Furthermore, there were complex correlations among sul1, sul2, tetM, tetW, mcyA-J, MCs, photosynthetic performance parameters, and ROS. The different concentration of GO will aggravate the hazards of M. aeruginosa by promoting the expression of mcyA-J, producing more MCs; simultaneously, it may cause the spread of ARGs.
Collapse
Affiliation(s)
- Shichao Wu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Rui Wang
- Shanghai Luming Biological Technology Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Liu J, Filipiak M, Mungunkhuyag K, Jedynak P, Burczyk J, Fu P, Malec P. Fast and efficient cadmium biosorption by Chlorella vulgaris K-01 strain: The role of cell walls in metal sequestration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Nigam H, Malik A, Singh V. A novel nanoemulsion-based microalgal growth medium for enhanced biomass production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:111. [PMID: 33941238 PMCID: PMC8091788 DOI: 10.1186/s13068-021-01960-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae are well-established feedstocks for applications ranging from biofuels to valuable pigments and therapeutic proteins. However, the low biomass productivity using commercially available growth mediums is a roadblock for its mass production. This work describes a strategy to boost algal biomass productivity by using an effective CO2 supplement. RESULTS In the present study, a novel nanoemulsion-based media has been tested for the growth of freshwater microalgae strain Chlorella pyrenoidosa. Two different nanoemulsion-based media were developed using 1% silicone oil nanoemulsion (1% SE) and 1% paraffin oil nanoemulsion (1% PE) supplemented in Blue-green 11 media (BG11). After 12 days of cultivation, biomass yield was found highest in 1% PE followed by 1% SE and control, i.e., 3.20, 2.75, and 1.03 g L-1, respectively. The chlorophyll-a synthesis was improved by 76% in 1% SE and 53% in 1% PE compared with control. The respective microalgal cell numbers for 1% PE, 1% SE and control measured using the cell counter were 3.00 × 106, 2.40 × 106, and 1.34 × 106 cells mL-1. The effective CO2 absorption tendency of the emulsion was highlighted as the key mechanism for enhanced algal growth and biomass production. On the biochemical characterization of the produced biomass, it was found that the nanoemulsion-cultivated C. pyrenoidosa had increased lipid (1% PE = 26.80%, 1% SE = 23.60%) and carbohydrates (1% PE = 17.20%, 1% SE = 18.90%) content compared to the control (lipid = 18.05%, carbohydrates = 13.60%). CONCLUSIONS This study describes a novel nanoemulsion which potentially acts as an effective CO2 supplement for microalgal growth media thereby increasing the growth of microalgal cells. Further, nanoemulsion-cultivated microalgal biomass depicts an increase in lipid and carbohydrate content. The approach provides high microalgal biomass productivity without altering morphological characteristics like cell shape and size as revealed by field emission scanning electron microscope (FESEM) images.
Collapse
Affiliation(s)
- Harshita Nigam
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Hauz Khas, New Delhi 110016 India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Hauz Khas, New Delhi 110016 India
| | - Vikram Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
8
|
Vu HP, Nguyen LN, Vu MT, Labeeuw L, Emmerton B, Commault AS, Ralph PJ, Mahlia TMI, Nghiem LD. Harvesting Porphyridium purpureum using polyacrylamide polymers and alkaline bases and their impact on biomass quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142412. [PMID: 33032127 DOI: 10.1016/j.scitotenv.2020.142412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study aims to examine the flocculation efficiency of Porphyridium purpureum (i.e. a red marine microalga with high content of pigments and fatty acids) grown in seawater medium using polyacrylamide polymers and alkaline flocculation. Polymers Flopam™ and FO3801 achieved the highest flocculation efficiency of over 99% at the optimal dose of 21 mg per g of dry biomass through charge neutralisation and bridging mechanism. The addition of sodium hydroxide, potassium hydroxide, and sodium carbonate also achieved flocculation efficiency of 98 and 91%, respectively, but high doses were required (i.e. > 500 mg per g of dry biomass). Calcium hydroxide was not as effective and could only achieve 75% flocculation efficiency. Precipitation of magnesium hydroxide was identified as the major cause of hydroxide-induced flocculation. On the other hand, sodium carbonate addition induced flocculation via both magnesium and calcium carbonate co-precipitation. The large mass of precipitates caused a sweeping effect and enmeshed the microalgal cells to trigger sedimentation. Cell membrane integrity analysis of flocculated P. purpureum indicated that polyacrylamide polymers led to significant compromised cells (i.e. 96%), compared to the alkaline bases (70-96% compromised cells). These results appear to be the first to demonstrate the high efficiency of polyacrylamide polymer and alkaline flocculation of P. purpureum but at the expense of the biomass quality.
Collapse
Affiliation(s)
- Hang P Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Minh T Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Leen Labeeuw
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | - Benjamin Emmerton
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | - Audrey S Commault
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, NSW 2007, Australia
| | - T M I Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Nguyen Tat Thanh University, NTT Institute of Hi-Technology, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
|