1
|
Rabti A, Baachaoui S, Ghodbane O, Raouafi N. Laser-ablated graphene electrodes modified with redox melanin-like film for redox capacitive sensing via the scavenging of nitrite ions. Food Chem 2025; 469:142509. [PMID: 39719782 DOI: 10.1016/j.foodchem.2024.142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
Improper use and harmful effects of nitrite ions pose a significant risk to human health. To address this concern, the use of carbon-based materials for electrochemical sensing is regarded as one of the most promising detection tools for ensuring the quality of drinking water and food products. In this context, we developed laser-ablated graphene electrodes (LAGEs) by direct laser scribing on a polyimide substrate, which were subsequently modified by electrochemical deposition of a redox-active melanin-like film (MeLF/LAGEs). Electrochemical investigations showed that the polymeric film had a beneficial effect on the heterogeneous electron transfer rate and induced an increase in the electrochemically active surface area and the charge capacitance of the modified electrodes owing to the newly added catechol and o-quinone moieties. Taking advantage of the redox activity of MeLF films, in-solution probe-free redox capacitance spectroscopy was used as a sensitive and highly adaptable method for sensing nitrite ions. Upon the interaction between the nitrite ions and the MeLF/LAGE redox interface, the charge distribution and its inherent redox capacitance were altered, which allowed the successful detection of nitrite ions with a detection limit of 2.45 μM (S/N = 3) and a wide dynamic range (10 μM to 10 mM). This sensor demonstrated high recovery rates when applied to tap and mineral water samples and five different processed meat samples, highlighting its potential for the routine detection of nitrite ions through scavenging.
Collapse
Affiliation(s)
- Amal Rabti
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LR15INRAP03), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia.
| | - Sabrine Baachaoui
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092 Tunis, Tunisia
| | - Ouassim Ghodbane
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LR15INRAP03), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092 Tunis, Tunisia.
| |
Collapse
|
2
|
Baachaoui S, Hajlaoui R, Aoun SB, Fortunelli A, Sementa L, Raouafi N. Covalent surface modification of single-layer graphene-like BC 6N nanosheets with reactive nitrenes for selective ammonia sensing via DFT modeling. NANOTECHNOLOGY 2024; 35:425501. [PMID: 39025079 DOI: 10.1088/1361-6528/ad64da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Rabiaa Hajlaoui
- Advanced Materials and Quantum Phenomena Laboratory, Physics Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF, 56124 Pisa, Italy
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| |
Collapse
|
3
|
Argoubi W, Algethami FK, Raouafi N. Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Adv 2024; 14:8007-8015. [PMID: 38454949 PMCID: PMC10918640 DOI: 10.1039/d3ra08567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Ensuring food security is crucial for public health, and the presence of mycotoxins, produced by fungi in improperly stored processed or unprocessed food, poses a significant threat. This research introduces a novel approach - a disposable aptasensing platform designed for the detection of ochratoxin A (OTA). The platform employs gold-nanostructured screen-printed carbon electrodes functionalized with a ferrocene derivative, serving as an integrated faradaic transducing system, and an anti-OTA aptamer as a bioreceptor site. Detection relies on the ferrocene electrochemical signal changes induced by the aptamer folding in the presence of the target molecule. Remarkably sensitive, the platform detects OTA within the range of 0.5 to 70 ng mL-1 and a detection limit of 11 pg mL-1. This limit is approximately 200 times below the levels stipulated by the European Commission for agricultural commodities. Notably, the sensing device exhibits efficacy in detecting OTA in complex media, such as roasted coffee beans and wine, without the need for sample pretreatment, yielding accurate recoveries. Furthermore, while label-free electrochemical aptasensors have proliferated, this study addresses a gap in understanding the binding mechanisms of some aptasensors. To enhance the experimental findings, a theoretical study was conducted to underscore the specificity of the anti-OTA aptamer as a donor for OTA detection. The molecular docking technique was employed to unveil the key binding region of the aptamer, providing valuable insights into the aptasensor specificity.
Collapse
Affiliation(s)
- Wicem Argoubi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| |
Collapse
|
4
|
Aldulaijan S. In-silico selection of peptides for the recognition of imidacloprid. PLoS One 2023; 18:e0295619. [PMID: 38085733 PMCID: PMC10715655 DOI: 10.1371/journal.pone.0295619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The sensitive detection of pesticides using low-cost receptors designed from peptides can widen their uses in the environmental surveillance for emerging pollutants. In-silico selection of peptides can help accelerate the design of receptor sequence banks for a given target of interest. In this work, we started from Lymnaea stagnalis acetylcholine-binding protein Q55R mutant receptor-imidacloprid complex, available in the PDB databank, to select three primary short peptides (YSP09, DMR12, WQW13 respectively having 9, 12 and 13 amino acids (AA) in length) from the pesticide interacting zones with the A, B and C chains of the nicotinic receptor. Using molecular docking and molecular dynamics (MD) simulations, we showed that the three peptides can form complexes with the target imidacloprid, having energies close to that obtained from a reference RNR12 peptide. Combination of these peptides allowed preparing a new set of longer peptides (YSM21, PSM22, PSW31 and WQA34) that have higher stability and affinity as shown by the MM-PBSA calculations. In particular, the WQA34 peptide displayed an average binding free energy of -6.44±0.27 kcal/mol, which is three times higher than that of the reference RNR12 peptide (-2.29±0.25 kcal/mol) and formed a stable complex with imidacloprid. Furthermore, the dissociation constants (Kd), calculated from the binding free energy, showed that WQA32 (40 μM) has three orders of magnitude lower Kd than the reference RNR12 peptide (3.4 × 104 μM). Docking and RMSD scores showed that the WQA34 peptide is potentially selective to the target imidacloprid with respect to acetamiprid and clothianidin. Therefore, this peptide can be used in wet-lab experiments to prepare a biosensor to selectively detect imidacloprid.
Collapse
Affiliation(s)
- Sarah Aldulaijan
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Algethami FK, Rabti A, Mastouri M, Ben Aoun S, Alqarni LS, Elamin MR, Raouafi N. Sub-femtomolar capacitance-based biosensing of kanamycin using screen-printed electrodes coated with redox-active polymeric films. Mikrochim Acta 2023; 190:434. [PMID: 37821740 DOI: 10.1007/s00604-023-06003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
An ultrasensitive capacitance-based biosensor has been developed capable of detecting the kanamycin (KAN) antibiotic at sub-femtomolar levels. The biosensor was constructed using a potential-pulse-assisted method, allowing for the layer-by-layer deposition of a melanin-like polymeric film (MLPF) on an electrode surface modified with gold nanoparticles (AuNPs). The MLPF was formed through the electrochemical polymerization of dopamine and the specific kanamycin aptamer. By optimizing the operating parameters, we achieved a label-free detection of kanamycin by monitoring the variation of pseudocapacitive properties of the MLPF-modified electrode using electrochemical impedance spectroscopy. The developed biosensor demonstrated a wide linear response ranging from 1 fM to 100 pM, with a remarkable limit of detection of 0.3 fM (S/N = 3) for kanamycin. Furthermore, the biosensor was successfully applied to detect kanamycin in milk samples, exhibiting good recovery. These findings highlight the promising potential of the aptasensor for determination of antibiotic residues and ensuring food safety. In conclusion, our ultrasensitive capacitance-based biosensor provides a reliable and efficient method for detecting trace amounts of kanamycin in dairy products. This technology can contribute to safeguarding consumer health and maintaining high food safety standards.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623, Riyadh, Saudi Arabia.
| | - Amal Rabti
- Laboratory of Materials, Treatment, and Analysis (LMTA), National Institute of Research and Physicochemical Analysis (INRAP), Biotechpole Sidi Thabet, 2020, Sidi Thabet, Tunisia
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, P.O Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Laila S Alqarni
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623, Riyadh, Saudi Arabia
| | - Mohamed R Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623, Riyadh, Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|