1
|
Ben-Saadon S, Gavriel M, Zaretsky U, Jaffa AJ, Grisaru D, Elad D. Tissue-engineered arterial intima model exposed to steady wall shear stresses. J Biomech 2021; 117:110236. [PMID: 33508722 DOI: 10.1016/j.jbiomech.2021.110236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
The arterial intima is continuously under pulsatile wall shear stresses (WSS) imposed by the circulating blood. The knowledge of the contribution of smooth muscle cells (SMC) to the response of endothelial cell (EC) to WSS is still incomplete. We developed a co-culture model of EC on top of SMC that mimics the inner in vivo structure of the arterial intima of large arteries. The co-cultured model, as well as a monolayer model of EC, were developed in custom-designed wells that allowed for mechanobiology experiments. Both the monolayer and co-culture models were exposed to steady flow induced WSS of up to 24 dyne/cm2 and for lengths of 60 min. Quantification of WSS induced alterations in the cytoskeletal actin filaments (F-actin) and vascular endothelial cadherin (VE-cadherin) junctions were utilized from confocal images and flow cytometry. High confluency of both models was observed even after exposure to the high WSS. The quantitive analysis revealed larger post WSS amounts of EC F-actin polymerization in the monolayer, which may be explained by the relative help of the SMC to resist the external load of WSS. The VE-cadherin demonstrated morphological alterations in the monolayer model, but without significant changes in their content. The SMC in the co-culture maintained their contractile phenotype post high WSS which is more physiological, but not post low WSS. Generally, the results of this work demonstrate the active role of SMC in the intima performance to resist flow induced WSS.
Collapse
Affiliation(s)
- Sara Ben-Saadon
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Mark Gavriel
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ariel J Jaffa
- Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel Aviv 64239, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Grisaru
- Department of Gynecological Oncology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel Aviv 64239, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
2
|
Lambert LM, Pipinos II, Baxter BT, Chatzizisis YS, Ryu SJ, Leighton RI, Wei T. In vitro measurements of hemodynamic forces and their effects on endothelial cell mechanics at the sub-cellular level. BIOMICROFLUIDICS 2018; 12:064101. [PMID: 30473738 PMCID: PMC6226388 DOI: 10.1063/1.5028122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/29/2018] [Indexed: 05/23/2023]
Abstract
This paper presents micro-particle tracking velocimetry measurements over cultured bovine aortic endothelial cell monolayers in microchannels. The objective was to quantify fluid forces and cell morphology at the sub-cellular scale for monolayers subjected to steady shear rates of 5, 10, and 20 dyn/cm2. The ultimate goal of this study was to develop an experimental methodology for in vitro detailed study of physiologically realistic healthy and diseased conditions. Cell topography, shear stress, and pressure distributions were calculated from sets of velocity fields made in planes parallel to the microchannel wall. For each experiment, measurements were made in 3 h intervals for 18 h. It was found that there is a three-dimensional change in cell morphology as a result of applied shear stress. That is, cells flatten and become more wedge shaped in the stream direction while conserving volume by spreading laterally, i.e., in the cross-stream direction. These changes in cell morphology are directly related to local variations in fluid loading, i.e., shear stress and pressure. This paper describes the first flow measurements over a confluent layer of endothelial cells that are spatially resolved at the sub-cellular scale with a simultaneous temporal resolution to quantify the response of cells to fluid loading.
Collapse
Affiliation(s)
- L. M. Lambert
- Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - I. I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - B. T. Baxter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Y. S. Chatzizisis
- Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - S. J. Ryu
- Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | | | - T. Wei
- Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
3
|
Gong X, Yao J, He H, Zhao X, Liu X, Zhao F, Sun Y, Fan Y. Combination of flow and micropattern alignment affecting flow-resistant endothelial cell adhesion. J Mech Behav Biomed Mater 2017; 74:11-20. [DOI: 10.1016/j.jmbbm.2017.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
|
4
|
Leong CM, Voorhees A, Nackman GB, Wei T. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:045109. [PMID: 23635234 DOI: 10.1063/1.4802681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow. This flow chamber also allows the study of co-cultures (i.e., ECs and smooth muscle cells) and the effect of different substrates (i.e., coverslip and∕or polyethylene terepthalate (PET) membrane) on cellular response. In this report, the results of steady and pulsatile flow on fixed endothelial cells seeded on PET membrane and coverslip, respectively, are presented. Surface topography of ECs is computed from multiple two-dimensional flow measurements. The distributions of shear stress and wall pressure on each individual cell are also determined and the importance of both types of stress in cell remodeling is highlighted.
Collapse
Affiliation(s)
- Chia Min Leong
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| | | | | | | |
Collapse
|
5
|
Fu Y, Kunz R, Wu J, Dong C. Study of local hydrodynamic environment in cell-substrate adhesion using side-view μPIV technology. PLoS One 2012; 7:e30721. [PMID: 22363477 PMCID: PMC3281875 DOI: 10.1371/journal.pone.0030721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/20/2011] [Indexed: 01/10/2023] Open
Abstract
Tumor cell adhesion to the endothelium under shear flow conditions is a critical step that results in circulation-mediated tumor metastasis. This study presents experimental and computational techniques for studying the local hydrodynamic environment around adherent cells and how local shear conditions affect cell-cell interactions on the endothelium in tumor cell adhesion. To study the local hydrodynamic profile around heterotypic adherent cells, a side-view flow chamber assay coupled with micro particle imaging velocimetry (μPIV) technique was developed, where interactions between leukocytes and tumor cells in the near-endothelial wall region and the local shear flow environment were characterized. Computational fluid dynamics (CFD) simulations were also used to obtain quantitative flow properties around those adherent cells. Results showed that cell dimension and relative cell-cell positions had strong influence on local shear rates. The velocity profile above leukocytes and tumor cells displayed very different patterns. Larger cell deformations led to less disturbance to the flow. Local shear rates above smaller cells were observed to be more affected by relative positions between two cells.
Collapse
Affiliation(s)
- Yi Fu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Bioengineering Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert Kunz
- Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jianhua Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Cheng Dong
- Bioengineering Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lindken R, Rossi M, Grosse S, Westerweel J. Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines. LAB ON A CHIP 2009; 9:2551-67. [PMID: 19680579 DOI: 10.1039/b906558j] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this review we discuss the state of the art of the optical whole-field velocity measurement technique micro-scale Particle Image Velocimetry (microPIV). microPIV is a useful tool for fundamental research of microfluidics as well as for the detailed characterization and optimization of microfluidic applications in life science, lab-on-a-chip, biomedical research, micro chemical engineering, analytical chemistry and other related fields of research. An in depth description of the microPIV method is presented and compared to other flow visualization and measurement methods. An overview of the most relevant applications is given on the topics of near-wall flow, electrokinetic flow, biological flow, mixing, two-phase flow, turbulence transition and complex fluid dynamic problems. Current trends and applications are critically reviewed. Guidelines for the implementation and application are also discussed.
Collapse
Affiliation(s)
- Ralph Lindken
- Laboratory for Aero- and Hydrodynamics, Delft University of Technology, Delft, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Rossi M, Lindken R, Hierck BP, Westerweel J. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. LAB ON A CHIP 2009; 9:1403-11. [PMID: 19417907 DOI: 10.1039/b822270n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A lab-on-a-chip application for the investigation of biochemical and mechanical response of individual endothelial cells to different fluid dynamical conditions is presented. A microfluidic flow chamber design with a tapered geometry that creates a pre-defined, homogeneous shear stress gradient on the cell layer is described and characterized. A non-intrusive, non-tactile measurement method based on micro-PIV is used for the determination of the topography and shear stress distribution over individual cells with subcellular resolution. The cellular gene expression is measured simultaneously with the shape and shear stress distribution of the cell. With this set-up the response of the cells on different pre-defined shear stress levels is investigated without the influence of variations in repetitive experiments. Results are shown on cultured endothelial cells related to the promoter activity of the shear-responsive transcription factor KLF2 driving the marker gene for green fluorescent protein.
Collapse
Affiliation(s)
- Massimiliano Rossi
- Laboratory for Aero- and Hydrodynamics, Delft University of Technology, Delft, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Macario DK, Entersz I, Paul Abboud J, Nackman GB. Inhibition of Apoptosis Prevents Shear-Induced Detachment of Endothelial Cells. J Surg Res 2008; 147:282-9. [DOI: 10.1016/j.jss.2007.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 11/17/2022]
|