1
|
Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2024; 102:106738. [PMID: 38150955 PMCID: PMC10765487 DOI: 10.1016/j.ultsonch.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is believed to result from the high acoustic wave energy as well as the formation of cavitation. Cavitation is known to contribute to erosion and to cause damage away from the target, yet the exact contribution and mechanisms of cavitation remain currently unclear. Based on in situ experimental observations, post-exposure microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damage to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest.
Collapse
Affiliation(s)
- Luc Biasiori-Poulanges
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Bratislav Lukić
- European Synchrotron Radiation Facility, CS 40220, Grenoble F-38043, France
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
2
|
Secker TJ, Harling CC, Hand C, Voegeli D, Keevil CW, Leighton TG. A proof-of-concept study of the removal of early and late phase biofilm from skin wound models using a liquid acoustic stream. Int Wound J 2022; 19:2124-2135. [PMID: 35470982 DOI: 10.1111/iwj.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic wounds fail to progress through the normal stages of healing, with the largest remediable cause of chronicity being presence of a multi-species biofilm. Removal of biofilm from the wound environment is central to wound care. A device for mechanically removing biofilms from wounds has been devised. The removal is caused by small-scale liquid currents and shear, generated by acoustically activated microscopic air bubbles. These bubbles and acoustic waves are delivered onto the wound by a gentle liquid stream, allowing cleaning in situ and removal of debris in the run-off liquid. We have investigated if this liquid acoustic wound stream (LAWS) can remove bacterial biofilm from soft biological wound models and studied the effect of LAWS on the cellular tissues of the substrate. LAWS will efficiently remove early Pseudomonas aeruginosa biofilm from an artificial wound in a pig's trotter, 24 hours-mature biofilm of P. aeruginosa from a pre-wounded human full thickness skin model (EpiDerm FT), and 3-day mature biofilm of P. aeruginosa or Staphylococcus aureus from a porcine skin explant. Histological examinations of uninfected EpiDerm models that had been treated by LAWS and then stained with Haematoxylin and Eosin, demonstrated no damage to the human tissue, and wound diameter was smaller in the treated skin models compared with untreated samples. Immunofluorescence staining for cytokeratin 14 showed that keratinocytes had migrated further across the wound in the uninfected samples treated by LAWS. We discuss the implications for wound healing and propose further laboratory and clinical studies to demonstrate the removal of biofilm from patients with chronic leg ulcers and the impact on healing.
Collapse
Affiliation(s)
- Thomas J Secker
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Christopher C Harling
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Chloe Hand
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Southampton, UK
| | - David Voegeli
- Faculty of Health Sciences, University of Southampton, Southampton, UK.,Faculty of Health and Wellbeing, University of Winchester, Winchester, UK
| | - Charles W Keevil
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Timothy G Leighton
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK.,Sloan Water Technology Ltd, Southampton, UK
| |
Collapse
|
3
|
Duck F, Leighton T. Frequency bands for ultrasound, suitable for the consideration of its health effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2490. [PMID: 30404482 DOI: 10.1121/1.5063578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 06/08/2023]
Abstract
It is proposed that the ultrasound frequency spectrum should be divided into three bands in order to facilitate a more rational assessment of its health effects. Whilst statement of the frequencies at the borders of these bands facilitates their definition, it is recognized that these observables vary continuously with frequency and consequently these border frequencies should not be used to rule out the possibility of a given effect occurring. The lowest band, US(A), lies between 17.8 and 500 kHz. In this band acoustic cavitation and its associated forces form the dominant process resulting in biological effects in liquids and soft tissues, whereas health effects from airborne ultrasound have been reported but are far less researched. In the middle band, US(B), between 500 kHz and 100 MHz, temperature rise in tissues becomes the most important biological effect of exposure. The highest band, US(C), covers frequencies above 100 MHz, for which the radiation force becomes an increasingly important biophysical mechanism. A justification for the selection of 17.8 kHz in preference to any other threshold for the lower frequency limit for ultrasound is given.
Collapse
Affiliation(s)
- Francis Duck
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Timothy Leighton
- Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Turangan CK, Ball GJ, Jamaluddin AR, Leighton TG. Numerical studies of cavitation erosion on an elastic–plastic material caused by shock-induced bubble collapse. Proc Math Phys Eng Sci 2017. [DOI: 10.1098/rspa.2017.0315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a study of shock-induced collapse of single bubbles near/attached to an elastic–plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble–wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic–plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a ‘mushroom shape’. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
Collapse
Affiliation(s)
- C. K. Turangan
- Department of Fluid Dynamics, Institute of High Performance Computing, , Singapore 138632
| | - G. J. Ball
- Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR, UK
| | - A. R. Jamaluddin
- Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - T. G. Leighton
- Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Manmi K, Wang Q. Acoustic microbubble dynamics with viscous effects. ULTRASONICS SONOCHEMISTRY 2017; 36:427-436. [PMID: 28069230 DOI: 10.1016/j.ultsonch.2016.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 11/09/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Microbubble dynamics subject to ultrasound are associated with important applications in biomedical ultrasonics, sonochemistry and cavitation cleaning. The viscous effects in this phenomenon is essential since the Reynolds number Re associated is about O(10). The flow field is characterized as being an irrotational flow in the bulk volume but with a thin vorticity layer at the bubble surface. This paper investigates the phenomenon using the boundary integral method based on the viscous potential flow theory. The viscous effects are incorporated into the model through including the normal viscous stress of the irrotational flow in the dynamic boundary condition at the bubble surface. The viscous correction pressure of Joseph & Wang (2004) is implemented to resolve the discrepancy between the non-zero shear stress of the irrotational flow at a free surface and the physical boundary condition of zero shear stress. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble oscillating in a viscous liquid for several cycles of oscillation for Re=10. It correlates pretty closely with both the experimental data and the axisymmetric simulation based on the Navier-Stokes equations for transient bubble dynamics near a rigid boundary. We further analyze microbubble dynamics near a rigid boundary subject to ultrasound travelling perpendicular and parallel to the boundary, respectively, in parameter regions of clinical relevance. The viscous effects to acoustic microbubble dynamics are analyzed in terms of the jet velocity, bubble volume, centroid movement, Kelvin impulse and bubble energy.
Collapse
Affiliation(s)
- Kawa Manmi
- Department of Mathematics, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; School of Mathematics, University of Birmingham, B15 2TT, United Kingdom
| | - Qianxi Wang
- School of Mathematics, University of Birmingham, B15 2TT, United Kingdom; School of Naval Architecture, Dalian University of Technology, Dalian 116085, China.
| |
Collapse
|
6
|
Ghorbani M, Oral O, Ekici S, Gozuacik D, Kosar A. Review on Lithotripsy and Cavitation in Urinary Stone Therapy. IEEE Rev Biomed Eng 2016; 9:264-83. [PMID: 27249837 DOI: 10.1109/rbme.2016.2573381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V.
Collapse
|
7
|
Wang Q, Liu W, Zhang AM, Sui Y. Bubble dynamics in a compressible liquid in contact with a rigid boundary. Interface Focus 2015; 5:20150048. [PMID: 26442148 PMCID: PMC4549850 DOI: 10.1098/rsfs.2015.0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/R m < 1, where s is the distance of the initial bubble centre from the boundary and R m is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage.
Collapse
Affiliation(s)
- Qianxi Wang
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - Wenke Liu
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - A. M. Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, 145, Nantong Street, Harbin, People's Republic of China
| | - Yi Sui
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|