1
|
Kura C, Wakeda M, Hayashi K, Ohmura T. Energetic and atomic structural analyses of the screw dislocation absorption at tilt grain boundaries in BCC-Fe. Sci Rep 2022; 12:21301. [PMID: 36494412 PMCID: PMC9734193 DOI: 10.1038/s41598-022-25066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The dislocation-grain boundary (GB) interaction plays an important role in GB-related plasticity. Therefore, an atomistic investigation of the interaction provides a deeper understanding of the strength and fracture of polycrystalline metals. In this study, we investigated the absorption of a screw dislocation with a Burgers vector perpendicular to the GB normal and the corresponding symmetric tilt grain boundaries (STGBs) in BCC-Fe based on molecular static simulations focusing on the STGB-dislocation interaction energy and atomistic structural changes at GB. The STGB-screw dislocation interaction depends on the energetical stability of the STGB against the GB shift along the Burgers vector direction. When the interaction exhibited a large attractive interaction energy, the dislocation dissociation and the GB shift along the Burgers vector direction occurred simultaneously. The interaction energy reveals that the interaction depends on the energetical stability of the STGB in terms of the GB shift in addition to the geometrical descriptor of the GB type, such as the Σ value. The same behavior was also obtained in the reaction when the second dislocation was introduced. We also discuss the screw dislocation absorption and rearrangement of the GB atomistic structure in STGB from an energetic viewpoint.
Collapse
Affiliation(s)
- Chiharu Kura
- Applied Physics Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan.
| | - Masato Wakeda
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Kazushi Hayashi
- Applied Physics Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Takahito Ohmura
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
2
|
Abstract
Unified equations for the relationships among dislocation density, carbon content and grain size in ferritic, martensitic and dual-phase steels are presented. Advanced high-strength steels have been developed to meet targets of improved strength and formability in the automotive industry, where combined properties are achieved by tailoring complex microstructures. Specifically, in dual-phase (DP) steels, martensite with high strength and poor ductility reinforces steel, whereas ferrite with high ductility and low strength maintains steel’s formability. To further optimise DP steel’s performance, detailed understanding is required of how carbon content and initial microstructure affect deformation and damage in multi-phase alloys. Therefore, we derive modified versions of the Kocks–Mecking model describing the evolution of the dislocation density. The coefficient controlling dislocation generation is obtained by estimating the strain increments produced by dislocations pinning at other dislocations, solute atoms and grain boundaries; such increments are obtained by comparing the energy required to form dislocation dipoles, Cottrell atmospheres and pile-ups at grain boundaries, respectively, against the energy required for a dislocation to form and glide. Further analysis is made on how thermal activation affects the efficiency of different obstacles to pin dislocations to obtain the dislocation recovery rate. The results are validated against ferritic, martensitic and dual-phase steels showing good accuracy. The outputs are then employed to suggest optimal carbon and grain size combinations in ferrite and martensite to achieve highest uniform elongation in single- and dual-phase steels. The models are also combined with finite-element simulations to understand the effect of microstructure and composition on plastic localisation at the ferrite/martensite interface to design microstructures in dual-phase steels for improved ductility.
Collapse
|
3
|
Analysis of the Crack Initiation and Growth in Crystalline Materials Using Discrete Dislocations and the Modified Kitagawa–Takahashi Diagram. CRYSTALS 2020. [DOI: 10.3390/cryst10050358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crack growth kinetics in crystalline materials is examined both from the point of continuum mechanics and discrete dislocation dynamics. Kinetics ranging from the Griffith crack to continuous elastic-plastic cracks are analyzed. Initiation and propagation of incipient cracks require very high stresses and appropriate stress gradients. These can be obtained either by pre-existing notches, as is done in a typical American Society of Testing and Materials (ASTM) fatigue and fracture tests, or by in situ generated stress concentrations via dislocation pile-ups. Crack growth kinetics are also examined using the modified Kitagawa–Takahashi diagram to show the role of internal stresses and their gradients needed to sustain continuous crack growth. Incipient crack initiation and growth are also examined using discrete dislocation modeling. The analysis is supported by the experimental data available in the literature.
Collapse
|
4
|
Barrera O, Bombac D, Chen Y, Daff TD, Galindo-Nava E, Gong P, Haley D, Horton R, Katzarov I, Kermode JR, Liverani C, Stopher M, Sweeney F. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. JOURNAL OF MATERIALS SCIENCE 2018; 53:6251-6290. [PMID: 31258179 PMCID: PMC6560796 DOI: 10.1007/s10853-017-1978-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/28/2017] [Indexed: 05/21/2023]
Abstract
Hydrogen embrittlement is a complex phenomenon, involving several length- and timescales, that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions, hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals, with a particular focus on steels. Here, we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods, macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore, we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement.
Collapse
Affiliation(s)
- O. Barrera
- Oxford Brookes University, Wheatley Campus, Wheatley, Oxford, OX33 1HX UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ UK
| | - D. Bombac
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS UK
| | - Y. Chen
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - T. D. Daff
- Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ UK
| | - E. Galindo-Nava
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS UK
| | - P. Gong
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| | - D. Haley
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH UK
| | - R. Horton
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BB UK
| | - I. Katzarov
- Department of Physics, King’s College London, Strand, London, WC2R 2LS UK
| | - J. R. Kermode
- Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry, CV4 7AL UK
| | - C. Liverani
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BB UK
| | - M. Stopher
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS UK
| | - F. Sweeney
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD UK
| |
Collapse
|