Curilef S, Plastino AR, Wedemann RS. Statistical dynamics of driven systems of confined interacting particles in the overdamped-motion regime.
CHAOS (WOODBURY, N.Y.) 2022;
32:113134. [PMID:
36456338 DOI:
10.1063/5.0104907]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Systems consisting of confined, interacting particles doing overdamped motion admit an effective description in terms of nonlinear Fokker-Planck equations. The behavior of these systems is closely related to the S power-law entropies and can be interpreted in terms of the S-based thermostatistics. The connection between overdamped systems and the S measures provides valuable insights on diverse physical problems, such as the dynamics of interacting vortices in type-II superconductors. The S-thermostatistical approach to the study of many-body systems described by nonlinear Fokker-Planck equations has been intensively explored in recent years, but most of these efforts were restricted to systems affected by time-independent external potentials. Here, we extend this treatment to systems evolving under time-dependent external forces. We establish a lower bound on the work done by these forces when they drive the system during a transformation. The bound is expressed in terms of a free energy based on the S entropy and is satisfied even if the driving forces are not derivable from a potential function. It constitutes a generalization, for systems governed by nonlinear Fokker-Planck equations involving general time-dependent external forces, of the H-theorem satisfied by these systems when the external forces arise from a time-independent potential.
Collapse