1
|
Liaquat H, Al-Jumaily AM. Resonance-Induced Therapeutic Technique for Skin Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:661-674. [PMID: 39818491 DOI: 10.1016/j.ultrasmedbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation. METHODS The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis. Finally, transient analyses were conducted analytically and numerically to evaluate the difference in vibrational response of healthy and cancerous cells when their resonant frequencies were closely matched. For analysis, we used healthy nucleus diameters of 3 µm, 5 µm and 7 µm, whereas 34 kPa was taken as the stiffness of healthy skin epithelial cells. Based on established trends, the nucleus-to-cytoplasm ratio was utilised to predict physical and mechanical properties as cells undergo neoplastic transformation. RESULTS Analytical and numerical simulation revealed an approximate frequency difference of 50-100 KHz for the different nucleus diameters. The transient simulation revealed a significant difference in the growth rate of cancer cells' vibration amplitude, which was 10 times greater than that of healthy cells. CONCLUSIONS This study highlights that cancer cells are more prone to resonance with tuned ultrasound frequencies, emphasising the need for detailed dynamic models incorporating the basement membrane's influence and experimental validation.
Collapse
Affiliation(s)
- Hassan Liaquat
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand
| | - Ahmed M Al-Jumaily
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand.
| |
Collapse
|
2
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Imran KM, Ganguly A, Paul T, Powar M, Vlaisavljevich E, Cho CS, Allen IC. Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses. Int J Hyperthermia 2023; 40:2244206. [PMID: 37580047 PMCID: PMC10430775 DOI: 10.1080/02656736.2023.2244206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the treatment of cancer. This includes histotripsy, which is a noninvasive, non-ionizing, non-thermal ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy has the potential to shift the local tumor microenvironment from immunologically 'cold' to 'hot'. This is associated with the production of damage associated molecular patterns, the release of a selection of proinflammatory mediators, and the induction of inflammatory forms of cell death in cells just outside of the treatment zone. In addition to the induction of this innate immune response, histotripsy can also improve engagement of the adaptive immune system and promote systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a limited number of accessible tumors could be a means of maximizing responsiveness to systemic immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical studies are still necessary to verify the presence and repeatability of these phenomena in human patients. As this technology nears regulatory approval for clinical use, it is our expectation that the insights and immunomodulatory mechanisms summarized in this review will serve as directional guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.
Collapse
Affiliation(s)
- Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Manali Powar
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, USA
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
4
|
Chen H, Zhu N, Osman M, Biskowitz R, Liu J, Khandare S, Butler P, Wong PK, Kothapalli SR. A transparent low intensity pulsed ultrasound (LIPUS) chip for high-throughput cell stimulation. LAB ON A CHIP 2021; 21:4734-4742. [PMID: 34739019 DOI: 10.1039/d1lc00667c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report an on-chip platform for low-intensity pulsed ultrasound (LIPUS) stimulation of cells directly cultured on a biocompatible surface of a transparent ultrasound transducer (TUT) fabricated using lithium niobate. The high light transmittance (>80%) and compact size (3 mm × 3 mm × 2 mm) of TUTs allowed easy integration with powerful optical microscopy techniques with no additional acoustic coupling and risk for contamination. TUTs were excited with varying acoustic excitation parameters (voltage amplitude and duty cycle) and resulting live cell calcium signaling was simultaneously imaged using time-lapse confocal microscopy, while the temperature change was measured by a thermocouple. Quantitative single-cell fluorescence analysis revealed the dynamic calcium signaling responses and together with the temperature measurements elucidated the optimal stimulation parameters for non-thermal and thermal effects. The fluorescence change profile was distinct from the recorded temperature change (<1 degree Celsius) profile under LIPUS treatment conditions. Cell dead assay results confirmed cells remain viable after the LIPUS treatment. These results confirmed that the TUT platform enables controllable, safe, high-throughput, and uniform mechanical stimulation of all plated cells. The on-chip LIPUS stimulation using TUTs has the potential to attract several in vitro and in vivo biomedical applications such as controlling stem cell differentiation and proliferation, studying biomechanical properties of cancer cells, and gaining fundamental insights into mechanotransduction pathways when integrated with state-of-the-art high-speed and high-resolution microscopy techniques.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Mohamed Osman
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Ryan Biskowitz
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jinyun Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Shubham Khandare
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Peter Butler
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|