1
|
Abstract
Because gene expression is important for evolutionary adaptation, its misregulation is an important cause of maladaptation. A misregulated gene can be incorrectly silent ("off") when a transcription factor (TF) that is required for its activation does not binds its regulatory region. Conversely, a misregulated gene can be incorrectly active ("on") when a TF not normally involved in its activation binds its regulatory region, a phenomenon also known as regulatory crosstalk. DNA mutations that destroy or create TF binding sites on DNA are an important source of misregulation and crosstalk. Although misregulation reduces fitness in an environment to which an organism is well-adapted, it may become adaptive in a new environment. Here, I derive simple yet general mathematical expressions that delimit the conditions under which misregulation can be adaptive. These expressions depend on the strength of selection against misregulation, on the fraction of DNA sequence space filled with TF binding sites, and on the fraction of genes that must be expressed for optimal adaptation. I then use empirical data from RNA sequencing, protein-binding microarrays, and genome evolution, together with population genetic simulations to ask when these conditions are likely to be met. I show that they can be met under realistic circumstances, but these circumstances may vary among organisms and environments. My analysis provides a framework in which improved theory and data collection can help us demonstrate the role of misregulation in adaptation. It also shows that misregulation, like DNA mutation, is one of life's many imperfections that can help propel Darwinian evolution.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland.,The Santa Fe Institute, Santa Fe, NM 87501, USA.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
2
|
Hill MS, Reuter M, Stewart AJ. Sexual antagonism drives the displacement of polymorphism across gene regulatory cascades. Proc Biol Sci 2019; 286:20190660. [PMID: 31161912 DOI: 10.1098/rspb.2019.0660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Males and females have different reproductive roles and are often subject to contrasting selection pressures. This sexual antagonism can lead, at a given locus, to different alleles being favoured in each sex and, consequently, to genetic variation being maintained in a population. Although the presence of sexually antagonistic (SA) polymorphisms has been documented across a range of species, their evolutionary dynamics remain poorly understood. Here, we study SA selection on gene expression, which is fundamental to sexual dimorphism, via the evolution of regulatory binding sites. We show that for sites longer than 1 nucleotide, expression polymorphism is maintained only when intermediate expression levels are deleterious to both sexes. We then show that, in a regulatory cascade, expression polymorphism tends to become displaced over evolutionary time from the target of SA selection to upstream regulators. Our results have consequences for understanding the evolution of sexual dimorphism, and provide specific empirical predictions for the regulatory architecture of genes under SA selection.
Collapse
Affiliation(s)
- Mark S Hill
- 1 Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , USA.,2 Research Department of Genetics, Evolution and Environment, University College London , London , UK
| | - Max Reuter
- 2 Research Department of Genetics, Evolution and Environment, University College London , London , UK
| | - Alexander J Stewart
- 3 Department of Biology and Biochemistry, University of Houston , Houston, TX , USA
| |
Collapse
|
3
|
Mehrotra R, Loake G, Mehrotra S. Promoter choice: Selection vs. rejection. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
López Y, Vandenbon A, Nose A, Nakai K. Modeling the cis-regulatory modules of genes expressed in developmental stages of Drosophila melanogaster. PeerJ 2017; 5:e3389. [PMID: 28584716 PMCID: PMC5452948 DOI: 10.7717/peerj.3389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Because transcription is the first step in the regulation of gene expression, understanding how transcription factors bind to their DNA binding motifs has become absolutely necessary. It has been shown that the promoters of genes with similar expression profiles share common structural patterns. This paper presents an extensive study of the regulatory regions of genes expressed in 24 developmental stages of Drosophila melanogaster. It proposes the use of a combination of structural features, such as positioning of individual motifs relative to the transcription start site, orientation, pairwise distance between motifs, and presence of motifs anywhere in the promoter for predicting gene expression from structural features of promoter sequences. RNA-sequencing data was utilized to create and validate the 24 models. When genes with high-scoring promoters were compared to those identified by RNA-seq samples, 19 (79.2%) statistically significant models, a number that exceeds previous studies, were obtained. Each model yielded a set of highly informative features, which were used to search for genes with similar biological functions.
Collapse
Affiliation(s)
- Yosvany López
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Alexis Vandenbon
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Chertkova AA, Schiffman JS, Nuzhdin SV, Kozlov KN, Samsonova MG, Gursky VV. In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure. BMC Evol Biol 2017; 17:4. [PMID: 28251865 PMCID: PMC5333172 DOI: 10.1186/s12862-016-0866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. RESULTS We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. CONCLUSION In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
Collapse
Affiliation(s)
- Aleksandra A. Chertkova
- Systems Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251 Russia
| | - Joshua S. Schiffman
- Molecular and Computational Biology, University of Southern California, Los Angeles, 90089 CA USA
| | - Sergey V. Nuzhdin
- Systems Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251 Russia
- Molecular and Computational Biology, University of Southern California, Los Angeles, 90089 CA USA
| | - Konstantin N. Kozlov
- Systems Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251 Russia
| | - Maria G. Samsonova
- Systems Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251 Russia
| | - Vitaly V. Gursky
- Systems Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251 Russia
- Theoretical Department, Ioffe Institute, Polytechnicheskaya, 26, St. Petersburg, 194021 Russia
| |
Collapse
|
6
|
Wheeler LC, Lim SA, Marqusee S, Harms MJ. The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 2016; 38:37-43. [PMID: 27288744 DOI: 10.1016/j.sbi.2016.05.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022]
Abstract
Were ancient proteins systematically different than modern proteins? The answer to this question is profoundly important, shaping how we understand the origins of protein biochemical, biophysical, and functional properties. Ancestral sequence reconstruction (ASR), a phylogenetic approach to infer the sequences of ancestral proteins, may reveal such trends. We discuss two proposed trends: a transition from higher to lower thermostability and a tendency for proteins to acquire higher specificity over time. We review the evidence for elevated ancestral thermostability and discuss its possible origins in a changing environmental temperature and/or reconstruction bias. We also conclude that there is, as yet, insufficient data to support a trend from promiscuity to specificity. Finally, we propose future work to understand these proposed evolutionary trends.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States; Institute of Molecular Biology, University of Oregon, Eugene, OR, United States
| | - Shion A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States; Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States.
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States; Institute of Molecular Biology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
7
|
Tuğrul M, Paixão T, Barton NH, Tkačik G. Dynamics of Transcription Factor Binding Site Evolution. PLoS Genet 2015; 11:e1005639. [PMID: 26545200 PMCID: PMC4636380 DOI: 10.1371/journal.pgen.1005639] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. Evolution has produced a remarkable diversity of living forms that manifests in qualitative differences as well as quantitative traits. An essential factor that underlies this variability is transcription factor binding sites, short pieces of DNA that control gene expression levels. Nevertheless, we lack a thorough theoretical understanding of the evolutionary times required for the appearance and disappearance of these sites. By combining a biophysically realistic model for how cells read out information in transcription factor binding sites with model for DNA sequence evolution, we explore these timescales and ask what factors crucially affect them. We find that the emergence of binding sites from a random sequence is generically slow under point and insertion/deletion mutational mechanisms. Strong selection, sufficient genomic sequence in which the sites can evolve, the existence of partially decayed old binding sites in the sequence, as well as certain biophysical mechanisms such as cooperativity, can accelerate the binding site gain times and make them consistent with the timescales suggested by comparative analyses of genomic data.
Collapse
Affiliation(s)
- Murat Tuğrul
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| | - Tiago Paixão
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
8
|
Prindull G. Potential Gene Interactions in the Cell Cycles of Gametes, Zygotes, Embryonic Stem Cells and the Development of Cancer. Front Oncol 2015; 5:200. [PMID: 26442212 PMCID: PMC4585297 DOI: 10.3389/fonc.2015.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This review is to explore whether potential gene interactions in the cell cycles of gametes, zygotes, and embryonic stem (ES) cells are associated with the development of cancer. METHODS MEDPILOT at the Central Library of the University of Cologne, Germany (Zentralbibliothek Köln) that covers 5,800 international medical journals and 4,300 E-journals was used to collect data. The initial searches were done in December 2012 and additional searches in October 2013-May 2015. The search terms included "cancer development," "gene interaction," and "ES cells," and the time period was between 1998 and 2015. A total of 147 articles in English language only were included in this review. RESULTS Transgenerational gene translation is implemented in the zygote through interactions of epigenetic isoforms of transcription factors (TFs) from parental gametes, predominantly during the first two zygote cleavages. Pluripotent transcription factors may provide interacting links with mutated genes during zygote-to-ES cell switches. Translation of post-transcriptional carcinogenic genes is implemented by abnormally spliced, tumor-specific isoforms of gene-encoded mRNA/non-coding RNA variants of TFs employing de novo gene synthesis and neofunctionalization. Post-translationally, mutated genes are preserved in pre-neoplastic ES cell subpopulations that can give rise to overt cancer stem cells. Thus, TFs operate as cell/disease-specific epigenetic messengers triggering clinical expression of neoplasms. CONCLUSION Potential gene interactions in the cell cycle of gametes, zygotes, and ES cells may play some roles in the development of cancer.
Collapse
Affiliation(s)
- Gregor Prindull
- Medical Faculty, University of Göttingen , Göttingen , Germany
| |
Collapse
|
9
|
Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding. Genetics 2014; 198:1155-66. [PMID: 25173845 DOI: 10.1534/genetics.114.168112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same phenotype through incompatible allelic combinations. We explore the evolutionary conditions that promote and constrain hybrid incompatibility in regulatory networks using a bioenergetic model (combining thermodynamics and kinetics) of transcriptional regulation, considering the bioenergetic basis of molecular interactions between transcription factors (TFs) and their binding sites. The bioenergetic parameters consider the free energy of formation of the bond between the TF and its binding site and the availability of TFs in the intracellular environment. Together these determine fractional occupancy of the TF on the promoter site, the degree of subsequent gene expression and in diploids, and the degree of dominance among allelic interactions. This results in a sigmoid genotype-phenotype map and fitness landscape, with the details of the shape determining the degree of bioenergetic evolutionary constraint on hybrid incompatibility. Using individual-based simulations, we subjected two allopatric populations to parallel directional or stabilizing selection. Misregulation of hybrid gene expression occurred under either type of selection, although it evolved faster under directional selection. Under directional selection, the extent of hybrid incompatibility increased with the slope of the genotype-phenotype map near the derived parental expression level. Under stabilizing selection, hybrid incompatibility arose from compensatory mutations and was greater when the bioenergetic properties of the interaction caused the space of nearly neutral genotypes around the stable expression level to be wide. F2's showed higher hybrid incompatibility than F1's to the extent that the bioenergetic properties favored dominant regulatory interactions. The present model is a mechanistically explicit case of the Bateson-Dobzhansky-Muller model, connecting environmental selective pressure to hybrid incompatibility through the molecular mechanism of regulatory divergence. The bioenergetic parameters that determine expression represent measurable properties of transcriptional regulation, providing a predictive framework for empirical studies of how phenotypic evolution results in epistatic incompatibility at the molecular level in hybrids.
Collapse
|