1
|
Fábregas-Tejeda A, Sims M. On the prospects of basal cognition research becoming fully evolutionary: promising avenues and cautionary notes. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2025; 47:10. [PMID: 39913055 PMCID: PMC11802611 DOI: 10.1007/s40656-025-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
The research programme 'basal cognition' adopts an evolutionary perspective for studying biological cognition. This entails investigating possible cognitive processes in 'simple'-often non-neuronal-organisms as a means to discover conserved mechanisms and adaptive capacities underwriting cognition in more complex (neuronal) organisms. However, by pulling in the opposite direction of a tradition that views cognition as something that is unique to neuronal organisms, basal cognition has been met with a fair amount of scepticism by philosophers and scientists. The very idea of approaching cognition by way of investigating the behaviour and underlying mechanisms in, say, bacteria, has been seen as preposterous and harmful to both cognitive science and biology. This paper aims to temper such scepticism to a certain degree by drawing parallels with how the evolution of 'development,' another loaded concept that refers to a not-so-easily definable, contested bundle of phenomena, has been fruitfully approached in Evolutionary Developmental Biology (Evo-Devo). Through this comparison, we identify four promising features of the basal cognition approach. These features suggest that sweeping scepticism may be unwarranted. However, each of them comes with important epistemic cautionary notes that should not be disregarded. By presenting these twofold considerations as potential ways to integrate a fully evolutionary perspective into basal cognition, this paper seeks to provide clarity and direction for the advancement of this research programme.
Collapse
Affiliation(s)
| | - Matthew Sims
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- Institute for Philosophy II, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Dvořáček J, Kodrík D. Brain and cognition: The need for a broader biological perspective to overcome old biases. Neurosci Biobehav Rev 2024; 167:105928. [PMID: 39427812 DOI: 10.1016/j.neubiorev.2024.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Even with accumulating knowledge, no consensus regarding the understanding of intelligence or cognition exists, and the universal brain bases for these functions remain unclear. Traditionally, our understanding of cognition is based on self-evident principles that appear indisputable when looking only at our species; however, this can distance us from understanding its essence (anthropocentrism, corticocentrism, intellectocentrism, neurocentrism, and idea of orthogenesis of brain evolution). Herein, we use several examples from biology to demonstrate the usefulness of comparative ways of thinking in relativizing these biases. We discuss the relationship between the number of neurons and cognition and draw attention to the highly developed cognitive performance of animals with small brains, to some "tricks" of evolution, to how animals cope with small hardware, to some animals with high-quality brains with an alternative architecture to vertebrates, and to surprising basal cognitive skills in aneural, unicellular organisms. Cognition can be supplemented by the idea of a multicellular organism as a continuum, with many levels of cognitive function, including the possible basal learning in single cells.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budĕjovice 370 05, Czech Republic; Psychiatric Hospital Cerveny Dvur, Cerveny Dvur 1, Cesky Krumlov 381 01, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice 370 05, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budĕjovice 370 05, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice 370 05, Czech Republic
| |
Collapse
|
3
|
Rosina P, Grube M. Novel image-analytic approach reveals new insights in fine-tuning of slime mould network adaptation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240950. [PMID: 39493301 PMCID: PMC11528663 DOI: 10.1098/rsos.240950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
This study introduces a novel methodology to explore the network dynamics of Physarum polycephalum, an organism celebrated for its remarkable adaptive capabilities. We used two innovative techniques to analyse its growth behaviour and network modifications under stress conditions, including starvation and differential epinephrine exposures. The first method provided a quantitative assessment of growth and exploration over time. The second method provided a detailed examination of vein diameter and contraction patterns, illuminating the physiological adjustments P. polycephalum undergoes in response to environmental challenges. By integrating these approaches, we were able to estimate the total network volume of the organism, with a focus on the normalized estimated volume, unveiling insightful aspects of its structural adaptations. While starvation reduced the volume, indicating a significant structural compromise, low and high epinephrine concentrations maintained a volume-to-area ratio comparable with the control. Determining the fractal dimension of the networks over time revealed a fine-tuning of the network complexity in response to environmental conditions, with significant reductions under stress indicating a constrained network adaptation strategy. These methods, novel in their application to P. polycephalum, provide a framework for future studies and a basis for exploring complex network behaviours with potential applications in bioengineering and adaptive network design.
Collapse
Affiliation(s)
- Philipp Rosina
- Institute of Biology, University of Graz, Graz8010, Austria
| | - Martin Grube
- Institute of Biology, University of Graz, Graz8010, Austria
| |
Collapse
|
4
|
Yoneoka E, Takamatsu A. Relation between learning process and morphology of transport tube network in plasmodium of Physarum polycephalum. Front Cell Dev Biol 2023; 11:1249165. [PMID: 38020888 PMCID: PMC10667701 DOI: 10.3389/fcell.2023.1249165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The question of whether a single-celled organism without a brain could have functions such as learning and memory has been the subject of much debate in recent years. The plasmodium of the true slime mold, Physarum polycephalum, is an ideal model organism for such a question. The plasmodium exhibits behaviors that resemble intelligence, including solving mazes, mimicking optimal rail transportation networks, predicting the weather, and solving traveling salesman problems. In addition, the plasmodium has recently been shown to have the simplest form of learning: habituation. In the experiments in which plasmodia were repeatedly allowed to cross bridges containing aversive chemicals, the habituation behavior has been confirmed. It has been shown that the habituation process involves chemicals that are stored internally. However, it is not clear how these chemicals result in change in the behavior of plasmodium during habituation learning. This study focused on the transport tube network formed in plasmodium during the above experiments. Then, the role of the network morphology in the habituation learning process was investigated. The results showed that the network morphology changes from tree to mesh type during habituation learning, and disrupting the learned network reduces habituation behavior. In addition, it was shown that the thickness oscillation frequency depends on the network morphology. The study found that in the plasmodium of P. polycephalum, a primitive organism without a brain, transport tube networks, instead of neuronal networks, play an important role in habituation learning and the resulting decision making.
Collapse
Affiliation(s)
| | - Atsuko Takamatsu
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Reid CR. Thoughts from the forest floor: a review of cognition in the slime mould Physarum polycephalum. Anim Cogn 2023; 26:1783-1797. [PMID: 37166523 PMCID: PMC10770251 DOI: 10.1007/s10071-023-01782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Sensing, communication, navigation, decision-making, memory and learning are key components in a standard cognitive tool-kit that enhance an animal's ability to successfully survive and reproduce. However, these tools are not only useful for, or accessible to, animals-they evolved long ago in simpler organisms using mechanisms which may be either unique or widely conserved across diverse taxa. In this article, I review the recent research that demonstrates these key cognitive abilities in the plasmodial slime mould Physarum polycephalum, which has emerged as a model for non-animal cognition. I discuss the benefits and limitations of comparisons drawn between neural and non-neural systems, and the implications of common mechanisms across wide taxonomic divisions. I conclude by discussing future avenues of research that will draw the most benefit from a closer integration of Physarum and animal cognition research.
Collapse
Affiliation(s)
- Chris R Reid
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
7
|
Sfera A, Andronescu L, Britt WG, Himsl K, Klein C, Rahman L, Kozlakidis Z. Receptor-Independent Therapies for Forensic Detainees with Schizophrenia-Dementia Comorbidity. Int J Mol Sci 2023; 24:15797. [PMID: 37958780 PMCID: PMC10647468 DOI: 10.3390/ijms242115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Forensic institutions throughout the world house patients with severe psychiatric illness and history of criminal violations. Improved medical care, hygiene, psychiatric treatment, and nutrition led to an unmatched longevity in this population, which previously lived, on average, 15 to 20 years shorter than the public at large. On the other hand, longevity has contributed to increased prevalence of age-related diseases, including neurodegenerative disorders, which complicate clinical management, increasing healthcare expenditures. Forensic institutions, originally intended for the treatment of younger individuals, are ill-equipped for the growing number of older offenders. Moreover, as antipsychotic drugs became available in 1950s and 1960s, we are observing the first generation of forensic detainees who have aged on dopamine-blocking agents. Although the consequences of long-term treatment with these agents are unclear, schizophrenia-associated gray matter loss may contribute to the development of early dementia. Taken together, increased lifespan and the subsequent cognitive deficit observed in long-term forensic institutions raise questions and dilemmas unencountered by the previous generations of clinicians. These include: does the presence of neurocognitive dysfunction justify antipsychotic dose reduction or discontinuation despite a lifelong history of schizophrenia and violent behavior? Should neurolipidomic interventions become the standard of care in elderly individuals with lifelong schizophrenia and dementia? Can patients with schizophrenia and dementia meet the Dusky standard to stand trial? Should neurocognitive disorders in the elderly with lifelong schizophrenia be treated differently than age-related neurodegeneration? In this article, we hypothesize that gray matter loss is the core symptom of schizophrenia which leads to dementia. We hypothesize further that strategies to delay or stop gray matter depletion would not only improve the schizophrenia sustained recovery, but also avert the development of major neurocognitive disorders in people living with schizophrenia. Based on this hypothesis, we suggest utilization of both receptor-dependent and independent therapeutics for chronic psychosis.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Luminita Andronescu
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - William G. Britt
- Department of Psychiatry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Kiera Himsl
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - Carolina Klein
- California Department of State Hospitals, Sacramento, CA 95814, USA;
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA;
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69366 Lyon Cedex, France;
| |
Collapse
|
8
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
9
|
Rolland A, Pasquier E, Malvezin P, Cassandra C, Dumas M, Dussutour A. Behavioural changes in slime moulds over time. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220063. [PMID: 36802777 PMCID: PMC9939273 DOI: 10.1098/rstb.2022.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
Changes in behaviour over the lifetime of single-cell organisms have primarily been investigated in response to environmental stressors. However, growing evidence suggests that unicellular organisms undergo behavioural changes throughout their lifetime independently of the external environment. Here we studied how behavioural performances across different tasks vary with age in the acellular slime mould Physarum polycephalum. We tested slime moulds aged from 1 week to 100 weeks. First, we showed that migration speed decreases with age in favourable and adverse environments. Second, we showed that decision making and learning abilities do not deteriorate with age. Third, we revealed that old slime moulds can recover temporarily their behavioural performances if they go throughout a dormant stage or if they fuse with a young congener. Last, we observed the response of slime mould facing a choice between cues released by clone mates of different age. We found that both old and young slime moulds are attracted preferentially toward cues left by young slime moulds. Although many studies have studied behaviour in unicellular organisms, few have taken the step of looking for changes in behaviour over the lifetime of individuals. This study extends our knowledge of the behavioural plasticity of single-celled organisms and establishes slime moulds as a promising model to investigate the effect of ageing on behaviour at the cellular level. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Angèle Rolland
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Emilie Pasquier
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Paul Malvezin
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Craig Cassandra
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Mathilde Dumas
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - A. Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
10
|
Kippenberger S, Pipa G, Steinhorst K, Zöller N, Kleemann J, Özistanbullu D, Kaufmann R, Scheller B. Learning in the Single-Cell Organism Physarum polycephalum: Effect of Propofol. Int J Mol Sci 2023; 24:ijms24076287. [PMID: 37047260 PMCID: PMC10094176 DOI: 10.3390/ijms24076287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled “intelligence”. In this study, the impact of propofol on Physarum’s “intelligence” was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum’s preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model.
Collapse
|
11
|
Parise AG, Gubert GF, Whalan S, Gagliano M. Ariadne’s thread and the extension of cognition: A common but overlooked phenomenon in nature? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1069349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Over recent decades, our philosophical and scientific understanding of cognition has changed dramatically. We went from conceiving humans as the sole truly cognitive species on the planet to endowing several organisms with cognitive capacities, from considering brains as the exclusive seat of cognition to extending cognitive faculties to the entire physical body and beyond. That cognition could extend beyond the organism’s body is no doubt one of the most controversial of the recent hypotheses. Extended cognition (ExC) has been discussed not only to explain aspects of the human cognitive process, but also of other species such as spiders and more recently, plants. It has been suggested that ExC could offer insights for the grounding of environmentally extended cognitive traits in evolved ecological functions. Here, we reviewed the ecological literature for possible ExC examples that satisfy the mutual manipulability criterion, which can be used to establish experimentally the boundaries of cognitive systems. Our conclusion is that ExC might be far more common than previously thought, and present in organisms as diverse as plants, fungi, termites, spiders, mammals, and slime moulds. Experimental investigation is needed to clarify this idea which, if proven correct, could illuminate a new path into understanding the origins and evolution of cognition.
Collapse
|
12
|
Fields C, Levin M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:819. [PMID: 35741540 PMCID: PMC9222757 DOI: 10.3390/e24060819] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022]
Abstract
One of the most salient features of life is its capacity to handle novelty and namely to thrive and adapt to new circumstances and changes in both the environment and internal components. An understanding of this capacity is central to several fields: the evolution of form and function, the design of effective strategies for biomedicine, and the creation of novel life forms via chimeric and bioengineering technologies. Here, we review instructive examples of living organisms solving diverse problems and propose competent navigation in arbitrary spaces as an invariant for thinking about the scaling of cognition during evolution. We argue that our innate capacity to recognize agency and intelligence in unfamiliar guises lags far behind our ability to detect it in familiar behavioral contexts. The multi-scale competency of life is essential to adaptive function, potentiating evolution and providing strategies for top-down control (not micromanagement) to address complex disease and injury. We propose an observer-focused viewpoint that is agnostic about scale and implementation, illustrating how evolution pivoted similar strategies to explore and exploit metabolic, transcriptional, morphological, and finally 3D motion spaces. By generalizing the concept of behavior, we gain novel perspectives on evolution, strategies for system-level biomedical interventions, and the construction of bioengineered intelligences. This framework is a first step toward relating to intelligence in highly unfamiliar embodiments, which will be essential for progress in artificial intelligence and regenerative medicine and for thriving in a world increasingly populated by synthetic, bio-robotic, and hybrid beings.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
| | - Michael Levin
- Allen Discovery Center at Tufts University, Science and Engineering Complex, 200 College Ave., Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Abstract
Physarum polycephalum is a unicellular slime mould that has been intensely studied owing to its ability to solve mazes, find shortest paths, generate Steiner trees, share knowledge and remember past events and the implied applications to unconventional computing. The CELL model is a cellular automaton introduced in Gunji et al. (Gunji et al. 2008 J. Theor. Biol. 253, 659-667 (doi:10.1016/j.jtbi.2008.04.017)) that models Physarum's amoeboid motion, tentacle formation, maze solving and network creation. In the present paper, we extend the CELL model by spawning multiple CELLs, allowing us to understand the interactions between multiple cells and, in particular, their mobility, merge speed and cytoplasm mixing. We conclude the paper with some notes about applications of our work to modelling the rise of present-day civilization from the early nomadic humans and the spread of trends and information around the world. Our study of the interactions of this unicellular organism should further the understanding of how P. polycephalum communicates and shares information.
Collapse
Affiliation(s)
- Sheryl Hsu
- Valley Christian High School, San Jose, CA, USA
| | | |
Collapse
|
14
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
15
|
Meena M, Kumar R, Swapnil P. Slime Molds. ENCYCLOPEDIA OF ANIMAL COGNITION AND BEHAVIOR 2022:6485-6489. [DOI: 10.1007/978-3-319-55065-7_1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
16
|
Abramson CI, Levin M. Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Commun Integr Biol 2021; 14:230-247. [PMID: 34925687 PMCID: PMC8677006 DOI: 10.1080/19420889.2021.2005863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The fields of developmental biology, biomedicine, and artificial life are being revolutionized by advances in synthetic morphology. The next phase of synthetic biology and bioengineering is resulting in the construction of novel organisms (biobots), which exhibit not only morphogenesis and physiology but functional behavior. It is now essential to begin to characterize the behavioral capacity of novel living constructs in terms of their ability to make decisions, form memories, learn from experience, and anticipate future stimuli. These synthetic organisms are highly diverse, and often do not resemble familiar model systems used in behavioral science. Thus, they represent an important context in which to begin to unify and standardize vocabulary and techniques across developmental biology, behavioral ecology, and neuroscience. To facilitate the study of behavior in novel living systems, we present a primer on techniques from the behaviorist tradition that can be used to probe the functions of any organism – natural, chimeric, or synthetic – regardless of the details of their construction or origin. These techniques provide a rich toolkit for advancing the fields of synthetic bioengineering, evolutionary developmental biology, basal cognition, exobiology, and robotics.
Collapse
Affiliation(s)
- Charles I Abramson
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Biology at Oklahoma State University, United States of America
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, United States of America
| |
Collapse
|
17
|
Sims M, Kiverstein J. Externalized memory in slime mould and the extended (non-neuronal) mind. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Pirrone A, Reina A, Stafford T, Marshall JAR, Gobet F. Magnitude-sensitivity: rethinking decision-making. Trends Cogn Sci 2021; 26:66-80. [PMID: 34750080 DOI: 10.1016/j.tics.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Magnitude-sensitivity refers to the result that performance in decision-making, across domains and organisms, is affected by the total value of the possible alternatives. This simple result offers a window into fundamental issues in decision-making and has led to a reconsideration of ecological decision-making, prominent computational models of decision-making, and optimal decision-making. Moreover, magnitude-sensitivity has inspired the design of new robotic systems that exploit natural solutions and apply optimal decision-making policies. In this article, we review the key theoretical and empirical results about magnitude-sensitivity and highlight the importance that this phenomenon has for the understanding of decision-making. Furthermore, we discuss open questions and ideas for future research.
Collapse
Affiliation(s)
- Angelo Pirrone
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, London, UK.
| | - Andreagiovanni Reina
- Institute for Interdisciplinary Studies on Artificial Intelligence (IRIDIA), Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Stafford
- Department of Psychology, University of Sheffield, Sheffield, UK
| | | | - Fernand Gobet
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, London, UK
| |
Collapse
|
19
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
20
|
Boussard A, Fessel A, Oettmeier C, Briard L, Döbereiner HG, Dussutour A. Adaptive behaviour and learning in slime moulds: the role of oscillations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190757. [PMID: 33487112 PMCID: PMC7935053 DOI: 10.1098/rstb.2019.0757] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
The slime mould Physarum polycephalum, an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum, we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Aurèle Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Adrian Fessel
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Christina Oettmeier
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Léa Briard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | | | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
21
|
Dussutour A. Learning in single cell organisms. Biochem Biophys Res Commun 2021; 564:92-102. [PMID: 33632547 DOI: 10.1016/j.bbrc.2021.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
The survival of all species requires appropriate behavioral responses to environmental challenges. Learning is one of the key processes to acquire information about the environment and adapt to changing and uncertain conditions. Learning has long been acknowledged in animals from invertebrates to vertebrates but remains a subject of debate in non-animal systems such a plants and single cell organisms. In this review I will attempt to answer the following question: are single cell organisms capable of learning? I will first briefly discuss the concept of learning and argue that the ability to acquire and store information through learning is pervasive and may be found in single cell organisms. Second, by focusing on habituation, the simplest form of learning, I will review a series of experiments showing that single cell organisms such as slime molds and ciliates display habituation and follow most of the criteria adopted by neuroscientists to define habituation. Then I will discuss disputed evidence suggesting that single cell organisms might also undergo more sophisticated forms of learning such as associative learning. Finally, I will stress out that the challenge for the future is less about whether or not to single cell organisms fulfill the definition of learning established from extensive studies in animal systems and more about acknowledging and understanding the range of behavioral plasticity exhibited by such fascinating organisms.
Collapse
Affiliation(s)
- Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, AD, France.
| |
Collapse
|
22
|
Patino-Ramirez F, Arson C, Dussutour A. Substrate and cell fusion influence on slime mold network dynamics. Sci Rep 2021; 11:1498. [PMID: 33452314 PMCID: PMC7810851 DOI: 10.1038/s41598-020-80320-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
The acellular slime mold Physarum polycephalum provides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efficient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efficient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone-mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to different environmental conditions.
Collapse
Affiliation(s)
- Fernando Patino-Ramirez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30309, USA.
| | - Chloé Arson
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30309, USA
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
23
|
Briard L, Goujarde C, Bousquet C, Dussutour A. Stress signalling in acellular slime moulds and its detection by conspecifics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190470. [PMID: 32420856 PMCID: PMC7331006 DOI: 10.1098/rstb.2019.0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Unicellular organisms live in unpredictable environments. Therefore, they need to continuously assess environmental conditions and respond appropriately to survive and thrive. When subjected to rapid changes in their environment or to cellular damages, unicellular organisms such as bacteria exhibit strong physiological reactions called stress responses that can be sensed by conspecifics. The ability to detect and use stress-related cues released by conspecifics to acquire information about the environment constitutes an adaptive survival response by prompting the organism to avoid potential dangers. Here, we investigate stress signalling and its detection by conspecifics in a unicellular organism, Physarum polycephalum. Slime moulds were subjected to either biotic (i.e. nutritional) or abiotic (i.e. chemical and light) stressors or left undisturbed while they were exploring a homogeneous environment. Then, we observed the responses of slime moulds facing a choice between cues released by stressed clone mates and cues released by undisturbed ones. We found that slime moulds actively avoided environments previously explored by stressed clone mates. These results suggest that slime moulds, like bacteria or social amoeba, exhibit physiological responses to biotic and abiotic stresses that can be sensed by conspecifics. Our results establish slime moulds as a promising new model to investigate the use of social information in unicellular organisms. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- L. Briard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | | | | | | |
Collapse
|
24
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
25
|
Boussard A, Delescluse J, Pérez-Escudero A, Dussutour A. Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180368. [PMID: 31006372 DOI: 10.1098/rstb.2018.0368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Learning and memory are indisputably key features of animal success. Using information about past experiences is critical for optimal decision-making in a fluctuating environment. Those abilities are usually believed to be limited to organisms with a nervous system, precluding their existence in non-neural organisms. However, recent studies showed that the slime mould Physarum polycephalum, despite being unicellular, displays habituation, a simple form of learning. In this paper, we studied the possible substrate of both short- and long-term habituation in slime moulds. We habituated slime moulds to sodium, a known repellent, using a 6 day training and turned them into a dormant state named sclerotia. Those slime moulds were then revived and tested for habituation. We showed that information acquired during the training was preserved through the dormant stage as slime moulds still showed habituation after a one-month dormancy period. Chemical analyses indicated a continuous uptake of sodium during the process of habituation and showed that sodium was retained throughout the dormant stage. Lastly, we showed that memory inception via constrained absorption of sodium for 2 h elicited habituation. Our results suggest that slime moulds absorbed the repellent and used it as a 'circulating memory'. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- A Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - J Delescluse
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Pérez-Escudero
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| |
Collapse
|
26
|
Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. THE ISME JOURNAL 2020; 14:380-388. [PMID: 31628441 PMCID: PMC6976561 DOI: 10.1038/s41396-019-0536-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022]
Abstract
Saprotrophic cord-forming basidiomycetes, with their mycelial networks at the soil/litter interface on the forest floor, play a major role in wood decomposition and nutrient cycling/relocation. Many studies have investigated foraging behaviour of their mycelium, but there is little information on their intelligence. Here, we investigate the effects of relative size of inoculum wood and new wood resource (bait) on the decision of a mycelium to remain in, or migrate from, inoculum to bait using Phanerochaete velutina as a model. Experiments allowed mycelium to grow from an inoculum across the surface of a soil microcosm where it encountered a new wood bait. After colonisation of the bait, the original inoculum was moved to a tray of fresh soil to determine whether the fungus was still able to grow out. This also allowed us to test the mycelium's memory of growth direction. When inocula were transferred to new soil, there was regrowth from 67% of the inocula, and a threshold bait size acted as a cue for the mycelium's decision to migrate for a final time, rather than a threshold of relative size of inoculum: bait. There was greater regrowth from the side that originally faced the new bait, implying memory of growth direction.
Collapse
Affiliation(s)
- Yu Fukasawa
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan.
| | - Melanie Savoury
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
27
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
28
|
Abstract
Although we often think of cells as small, simple building blocks of life, in fact they are highly complex and can perform a startling variety of functions. In our bodies, cells are programmed by complex differentiation pathways and are capable of responding to a bewildering range of chemical and physical signals. Free-living single-celled organisms, such as bacteria or protists, have to cope with varying environments, locate prey and potential mates, and escape from predators - all of the same tasks that a free-living animal is faced with. When animals face complex behavioral challenges, they rely on their cognitive abilities - the ability to learn from experience, to analyse a situation and choose an appropriate course of action. This ability is essential for survival and should, in principle, be a ubiquitous feature of all living things regardless of the complexity of the organism.
Collapse
Affiliation(s)
- Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Building 520 Room 224, 452 Escondido Mall, Stanford, CA 94305, USA.
| | - Wallace F Marshall
- Department Biochemistry & Biophysics, UCSF 600 16(th) St. San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Patino-Ramirez F, Boussard A, Arson C, Dussutour A. Substrate composition directs slime molds behavior. Sci Rep 2019; 9:15444. [PMID: 31659267 PMCID: PMC6817824 DOI: 10.1038/s41598-019-50872-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Cells, including unicellulars, are highly sensitive to external constraints from their environment. Amoeboid cells change their cell shape during locomotion and in response to external stimuli. Physarum polycephalum is a large multinucleated amoeboid cell that extends and develops pseudopods. In this paper, changes in cell behavior and shape were measured during the exploration of homogenous and non-homogenous environments that presented neutral, and nutritive and/or adverse substances. In the first place, we developed a fully automated image analysis method to measure quantitatively changes in both migration and shape. Then we measured various metrics that describe the area covered, the exploration dynamics, the migration rate and the slime mold shape. Our results show that: (1) Not only the nature, but also the spatial distribution of chemical substances affect the exploration behavior of slime molds; (2) Nutritive and adverse substances both slow down the exploration and prevent the formation of pseudopods; and (3) Slime mold placed in an adverse environment preferentially occupies previously explored areas rather than unexplored areas using mucus secretion as a buffer. Our results also show that slime molds migrate at a rate governed by the substrate up until they get within a critical distance to chemical substances.
Collapse
Affiliation(s)
- Fernando Patino-Ramirez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Aurèle Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Chloé Arson
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
30
|
Gao C, Liu C, Schenz D, Li X, Zhang Z, Jusup M, Wang Z, Beekman M, Nakagaki T. Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Phys Life Rev 2019; 29:1-26. [DOI: 10.1016/j.plrev.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
|
31
|
Smith‐Ferguson J, Beekman M. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biol Rev Camb Philos Soc 2019; 94:1935-1946. [DOI: 10.1111/brv.12542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jules Smith‐Ferguson
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Madeleine Beekman
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
32
|
Dussutour A, Ma Q, Sumpter D. Phenotypic variability predicts decision accuracy in unicellular organisms. Proc Biol Sci 2019; 286:20182825. [PMID: 30963918 PMCID: PMC6408605 DOI: 10.1098/rspb.2018.2825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
When deciding between different options, animals including humans face the dilemma that fast decisions tend to be erroneous, whereas accurate decisions tend to be relatively slow. Recently, it has been suggested that differences in the efficacy with which animals make a decision relate closely to individual behavioural differences. In this paper, we tested this hypothesis in a unique unicellular organism, the slime mould Physarum polycephalum. We first confirmed that slime moulds differed consistently in their exploratory behaviour from 'fast' to 'slow' explorers. Second, we showed that slow explorers made more accurate decisions than fast explorers. Third, we demonstrated that slime moulds integrated food cues in time and achieved higher accuracy when sampling time was longer. Lastly, we showed that in a competition context, fast explorers excelled when a single food source was offered, while slow explorers excelled when two food sources varying in quality were offered. Our results revealed that individual differences in accuracy were partly driven by differences in exploratory behaviour. These findings support the hypothesis that decision-making abilities are associated with behavioural types, even in unicellular organisms.
Collapse
Affiliation(s)
- Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Qi Ma
- Mathematics Department, Uppsala University, Uppsala, Sweden
| | - David Sumpter
- Mathematics Department, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Herrera-Rincon C, Levin M. Booting up the organism during development: Pre-behavioral functions of the vertebrate brain in guiding body morphogenesis. Commun Integr Biol 2018; 11:e1433440. [PMID: 29497473 PMCID: PMC5824965 DOI: 10.1080/19420889.2018.1433440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 01/24/2023] Open
Abstract
A recent study in Xenopus laevis embryos showed that the very early brain has important functions long before behavior. While the nascent brain is being constructed, it is required for normal patterning of the muscle and peripheral nerve networks, including those far away from the head. In addition to providing important developmental signals to remote tissues in normal embryogenesis, its presence is also able to render harmless exposure to specific chemicals that normally act as teratogens. These activities of the early brain can be partially compensated for in a brainless embryo by experimental modulation of neurotransmitter and ion channel signaling. Here, we discuss the major findings of this paper in the broader context of developmental physiology, neuroscience, and biomedicine. This novel function of the embryonic brain has significant implications, especially for understanding developmental toxicology and teratogenesis in the context of pharmaceutical and environmental reagents.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
34
|
Vogel D, Dussutour A. Direct transfer of learned behaviour via cell fusion in non-neural organisms. Proc Biol Sci 2017; 283:rspb.2016.2382. [PMID: 28003457 DOI: 10.1098/rspb.2016.2382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
Cell fusion is a fundamental phenomenon observed in all eukaryotes. Cells can exchange resources such as molecules or organelles during fusion. In this paper, we ask whether a cell can also transfer an adaptive response to a fusion partner. We addressed this question in the unicellular slime mould Physarum polycephalum, in which cell-cell fusion is extremely common. Slime moulds are capable of habituation, a simple form of learning, when repeatedly exposed to an innocuous repellent, despite lacking neurons and comprising only a single cell. In this paper, we present a set of experiments demonstrating that slime moulds habituated to a repellent can transfer this adaptive response by cell fusion to individuals that have never encountered the repellent. In addition, we show that a slime mould resulting from the fusion of a minority of habituated slime moulds and a majority of unhabituated ones still shows an adaptive response to the repellent. Finally, we further reveal that fusion must last a certain time to ensure an effective transfer of the behavioural adaptation between slime moulds. Our results provide strong experimental evidence that slime moulds exhibit transfer of learned behaviour during cell fusion and raise the possibility that similar phenomena may occur in other cell-cell fusion systems.
Collapse
Affiliation(s)
- David Vogel
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France.,Unit of Social Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
35
|
Miller WB. Biological information systems: Evolution as cognition-based information management. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 134:1-26. [PMID: 29175233 DOI: 10.1016/j.pbiomolbio.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023]
Abstract
An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses.
Collapse
|
36
|
Rozen DE. Slime molds transfer knowledge through fusion. J Exp Biol 2017; 220:1166. [DOI: 10.1242/jeb.147306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|