1
|
Molecular underpinnings of division of labour among workers in a socially complex termite. Sci Rep 2021; 11:18269. [PMID: 34521896 PMCID: PMC8440649 DOI: 10.1038/s41598-021-97515-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Division of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building. While mechanisms underlying task division are intensively studied in social Hymenoptera, less is known for termites, which independently evolved eusociality. We investigated molecular mechanisms underlying task division in termite workers to test for communality with social Hymenoptera. We compared similar-aged foraging workers with builders of the fungus-growing termite Macrotermes bellicosus using transcriptomes, endocrine measures and estimators of physiological condition. Based on results for social Hymenoptera and theory, we tested the hypotheses that (i) foragers are in worse physiological conditions than builders, (ii) builders are more similar in their gene expression profile to queens than foragers are, and (iii) builders invest more in anti-ageing mechanism than foragers. Our results support all three hypotheses. We found storage proteins to underlie task division of these similar-aged termite workers and these genes also characterize reproductive division of labour between queens and workers. This implies a co-option of nutrient-based pathways to regulate division of labour across lineages of termites and social Hymenoptera, which are separated by more than 133 million years.
Collapse
|
2
|
Sarro E, Sun P, Mauck K, Rodriguez-Arellano D, Yamanaka N, Woodard SH. An organizing feature of bumble bee life history: worker emergence promotes queen reproduction and survival in young nests. CONSERVATION PHYSIOLOGY 2021; 9:coab047. [PMID: 34221405 PMCID: PMC8242224 DOI: 10.1093/conphys/coab047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests.
Collapse
Affiliation(s)
- Erica Sarro
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Penglin Sun
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Kerry Mauck
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Damaris Rodriguez-Arellano
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, The University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| |
Collapse
|
3
|
Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Convergent evolution of eusociality with the division of reproduction and its plastic transition in Hymenoptera has long attracted the attention of researchers. To explain the evolutionary scenario of the reproductive division of labor, several hypotheses had been proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes the physiological decoupling of ovarian cycles and behavior into reproductive and non-reproductive individuals, whereas the SFH assumes that the ancestral reproductive function of juvenile hormone (JH) became split into a dual function. Here, we review recent progress in the understanding of the neurohormonal regulation of reproduction and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines. Biogenic amines are key substances involved in the switching of reproductive physiology and modulation of social behaviors. Dopamine has a pivotal role in the formation of reproductive skew irrespective of the social system, whereas octopamine and serotonin contribute largely to non-reproductive social behaviors. These decoupling roles of biogenic amines are seen in the life cycle of a single female in a solitary species, supporting OGPH. JH promotes reproduction with dopamine function in primitively eusocial species, whereas it regulates non-reproductive social behaviors with octopamine function in advanced eusocial species. The signal transduction networks between JH and the biogenic amines have been rewired in advanced eusocial species, which could regulate reproduction in response to various social stimuli independently of JH action.
Collapse
|
4
|
Hagadorn MA, Johnson MM, Smith AR, Seid MA, Kapheim KM. Experience, but not age, is associated with volumetric mushroom body expansion in solitary alkali bees. J Exp Biol 2021; 224:jeb.238899. [DOI: 10.1242/jeb.238899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT
In social insects, changes in behavior are often accompanied by structural changes in the brain. This neuroplasticity may come with experience (experience-dependent) or age (experience-expectant). Yet, the evolutionary relationship between neuroplasticity and sociality is unclear, because we know little about neuroplasticity in the solitary relatives of social species. We used confocal microscopy to measure brain changes in response to age and experience in a solitary halictid bee (Nomia melanderi). First, we compared the volume of individual brain regions among newly emerged females, laboratory females deprived of reproductive and foraging experience, and free-flying, nesting females. Experience, but not age, led to significant expansion of the mushroom bodies – higher-order processing centers associated with learning and memory. Next, we investigated how social experience influences neuroplasticity by comparing the brains of females kept in the laboratory either alone or paired with another female. Paired females had significantly larger olfactory regions of the mushroom bodies. Together, these experimental results indicate that experience-dependent neuroplasticity is common to both solitary and social taxa, whereas experience-expectant neuroplasticity may be an adaptation to life in a social colony. Further, neuroplasticity in response to social chemical signals may have facilitated the evolution of sociality.
Collapse
Affiliation(s)
- Mallory A. Hagadorn
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Makenna M. Johnson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Adam R. Smith
- Department of Biological Sciences, George Washington University, 800 22nd St NW, Washington, DC 20052, USA
| | - Marc A. Seid
- Biology Department, University of Scranton, 800 Linden St, Scranton, PA 18510, USA
| | - Karen M. Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
5
|
Kapheim KM, Johnson MM, Jolley M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 2021; 11:2993. [PMID: 33542351 PMCID: PMC7862682 DOI: 10.1038/s41598-021-82573-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.
Collapse
Affiliation(s)
- Karen M. Kapheim
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Makenna M. Johnson
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Maggi Jolley
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
6
|
Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, Jones BM, Kent CF, Ruzzante L, Sloofman L, Stolle E, Waterhouse RM, Zayed A, Zhang G, Wcislo WT. Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: Nomia melanderi). G3 (BETHESDA, MD.) 2019; 9:625-634. [PMID: 30642875 PMCID: PMC6404593 DOI: 10.1534/g3.118.200865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/12/2019] [Indexed: 02/07/2023]
Abstract
Alkali bees (Nomia melanderi) are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States. We sequenced, assembled, and annotated a high-quality draft genome of 299.6 Mbp for this species. Repetitive content makes up more than one-third of this genome, and previously uncharacterized transposable elements are the most abundant type of repetitive DNA. We predicted 10,847 protein coding genes, and identify 479 of these undergoing positive directional selection with the use of population genetic analysis based on low-coverage whole genome sequencing of 19 individuals. We found evidence of recent population bottlenecks, but no significant evidence of population structure. We also identify 45 genes enriched for protein translation and folding, transcriptional regulation, and triglyceride metabolism evolving slower in alkali bees compared to other halictid bees. These resources will be useful for future studies of bee comparative genomics and pollinator health research.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT 84322
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Hailin Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brock A Harpur
- Department of Entomology, Purdue University, W. Lafayette, IN, 47907
| | - Panagiotis Ioannidis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, 70013 Vassilika Vouton, Heraklion, Greece
| | - Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Clement F Kent
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Livio Ruzzante
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laura Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Eckart Stolle
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Robert M Waterhouse
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
7
|
Simons MA, Smith AR. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens. PeerJ 2018; 6:e4415. [PMID: 29479503 PMCID: PMC5824676 DOI: 10.7717/peerj.4415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.
Collapse
Affiliation(s)
- Meagan A Simons
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
8
|
Abstract
The study of insect social behavior has offered tremendous insight into the molecular mechanisms mediating behavioral and phenotypic plasticity. Genomic applications to the study of eusocial insect species, in particular, have led to several hypotheses for the processes underlying the molecular evolution of behavior. Advances in understanding the genetic control of social organization have also been made, suggesting an important role for supergenes in the evolution of divergent behavioral phenotypes. Intensive study of social phenotypes across species has revealed that behavior and caste are controlled by an interaction between genetic and environmentally mediated effects and, further, that gene expression and regulation mediate plastic responses to environmental signals. However, several key methodological flaws that are hindering progress in the study of insect social behavior remain. After reviewing the current state of knowledge, we outline ongoing challenges in experimental design that remain to be overcome in order to advance the field.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ,
| |
Collapse
|
9
|
Kapheim KM, Johnson MM. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees ( Nomia melanderi). ACTA ACUST UNITED AC 2017; 220:3794-3801. [PMID: 28821570 DOI: 10.1242/jeb.162255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Eusocial insect colonies are defined by extreme variation in reproductive activity among castes, but the ancestral conditions from which this variation arose are unknown. Investigating the factors that contribute to variation in reproductive physiology among solitary insects that are closely related to social species can help to fill this gap. We experimentally tested the role of nutrition, juvenile hormone (JH) and social cues on reproductive maturation in solitary alkali bees (Halictidae: Nomia melanderi). We found that alkali bee females emerge from overwintering with small Dufour's glands and small ovaries, containing oocytes in the early stages of development. Oocyte maturation occurs rapidly, and is staggered between the two ovaries. Lab-reared females reached reproductive maturity without access to mates or nesting opportunities, and many had resorbed oocytes. Initial activation of these reproductive structures does not depend on pollen consumption, though dietary protein or lipids may be necessary for long-term reproductive activity. JH is likely to be a limiting factor in alkali bee reproductive activation, as females treated with JH were more likely to develop mature oocytes and Dufour's glands. Unlike for related social bees, the effects of JH were not suppressed by the presence of older, reproductive females. These results provide valuable insight into the factors that influence reproductive activity in an important native pollinator, and those that may have been particularly influential in the evolution of reproductive castes.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Makenna M Johnson
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
10
|
Muth F, Cooper TR, Bonilla RF, Leonard AS. A novel protocol for studying bee cognition in the wild. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felicity Muth
- Department of Biology University of Nevada Reno NV USA
| | | | | | | |
Collapse
|