1
|
Elwood RW. A History of Pain Studies and Changing Attitudes to the Welfare of Crustaceans. Animals (Basel) 2025; 15:445. [PMID: 39943215 PMCID: PMC11815813 DOI: 10.3390/ani15030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Early discussions about possible pain in crustaceans often comprised speculation and anecdotes. Experiments to investigate pain took guidance from these early debates, and from studies on other taxa. Many experiments provided data that are consistent with the idea of pain. However, that does not mean that pain has been proved, but they open the possibility. With each study that is consistent with pain being felt, the probability increases, but we will probably never have conclusive proof. Some responses appear to be nociceptive reflexes; however, they at least indicate that the animal responds to stimuli such as tissue damage, heat, acid, alkaline, or electric shock. The data are said to be consistent with pain only if they cannot be explained by reflexes. These studies have encouraged various organisations to improve the welfare of crustaceans, e.g., PETA, Crustacean Compassion, RSPCA, British Veterinary Association, UFAW, and HSA. They also formed much of the evidence included in the highly influential review of sentience for the UK government that resulted in the inclusion of decapod crustaceans in the Animal Welfare (Sentience) Act 2022. This recognises that decapod crustaceans are sentient. By contrast, the New York Declaration recognises there is a possibility of sentience. Others have argued against the idea of pain in crustaceans. Nevertheless, the 2022 Act provided an impetus to groups that campaign for improved welfare. Some UK retailers now require improved slaughter techniques for the shrimp/prawn they sell, and electrical stunning is the preferred slaughter method.
Collapse
|
2
|
Clark FE. Levelling up the study of animal gameplay. Neurosci Biobehav Rev 2025; 169:106016. [PMID: 39826823 DOI: 10.1016/j.neubiorev.2025.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Play in humans and other animals is widespread and intuitive to recognise. Creative, unstructured play is difficult to quantify, but games direct play towards a specific goal and have defined rules, mechanics and rewards. To date, games have been under-utilised in human and animal behavioural neuroscience. This review evaluates evidence that animals can play human games, including game-theory contests, tangible games, and video games. Animals can be trained to play various human games with cognitive capacities such as role adoption, rule-following and performance monitoring. Animals can make irrational gameplay decisions that jeopardise rewards and have salient emotional responses to winning and losing. Games can advance the field of behavioural neuroscience in several ways. Cognitive tasks can become more engaging and ecologically relevant by adding game elements, known as gamification. Games can be used to induce and measure more naturalistic emotional responses to the process of overcoming (progression/regression) and end state (winning/losing) of cognitive challenges. There is also scope to target specific cognitive skill deficiencies in captive animals using games. However, a recent rapid increase in computerised testing environments raises an important ethical question about the boundary between games and reality for animals.
Collapse
Affiliation(s)
- Fay E Clark
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
3
|
Haussler KK, le Jeune SS, MacKechnie-Guire R, Latif SN, Clayton HM. The Challenge of Defining Laterality in Horses: Is It Laterality or Just Asymmetry? Animals (Basel) 2025; 15:288. [PMID: 39943060 PMCID: PMC11816311 DOI: 10.3390/ani15030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
The defining characteristic of laterality is the dominance of one side of the brain controlling specific functions of paired organs or on one side of the body. Structural and functional asymmetries are ubiquitous in horses and range from anatomical features (e.g., the length of long bones) to the gathering of sensory information (e.g., which eye is used to observe unfamiliar scenes) and motor functions (e.g., left-right differences in locomotion). There is a common tendency to assign observed structural or functional asymmetries to lateralization, which often involves more than a simple left-right difference in observed behavior. This narrative review explores the concept of laterality relative to the structural and functional asymmetries reported in horses. Inconsistent and poorly defined terminology, a widely disparate methodology, and a lack of standardized thresholds make it difficult to assess the presence or degree of laterality. Within this context, there seems to be limited evidence of laterality in horses and much more prevalent and stronger support for structural and functional asymmetries due to a wide range of well-established behavioral, nociceptive, and biomechanical mechanisms. The authors caution against generalizing the idea that all observed structural or functional asymmetries in horses are due to laterality.
Collapse
Affiliation(s)
- Kevin K. Haussler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Sarah S. le Jeune
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA;
| | | | - Selma N. Latif
- Pferdepraxis Vetcheck GmbH, Wierezwil-Rüberi 273, 3255 Rapperswil BE, Bern, Switzerland;
| | - Hilary M. Clayton
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
4
|
Zipple MN, Hazelwood C, Webster MF, Benítez ME. Animal emotions and consciousness: a preliminary assessment of researchers' perceptions and biases and prospects for future progress. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241255. [PMID: 39539500 PMCID: PMC11558068 DOI: 10.1098/rsos.241255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Scientists and philosophers have long struggled with the question of whether non-human animals experience emotions or consciousness. Yet, it is unclear where the scientific consensus on these topics lies today. To address this gap, we administered a survey of professional animal behaviour researchers to assess perceptions regarding (i) the taxonomic distribution of emotions and consciousness in non-human animals, (ii) respondents' confidence in this assessment, and (iii) attitudes towards pitfalls and potential for progress when addressing these questions. Respondents (n = 100) ascribe emotionality and consciousness to a broad swath of the animal taxonomy, including non-human primates, other mammals, birds and cephalopods. Respondents' attribution of these phenomena was strongly associated with their confidence in their assessments (R 2 > 0.9), with respondents assuming an absence of emotions and consciousness when they were unsure. We also identify an emergent consensus of the components involved in a functional definition of emotions. Researchers are optimistic that tools either currently exist or will exist in the future to rigorously address these questions (>85%) and that animal behaviour, as a field, should do more to encourage research works on emotions (>70%). We discuss implications for publication bias and future work in this area as well as ethical considerations regarding animal care and use.
Collapse
Affiliation(s)
- Matthew N. Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| | - Caleb Hazelwood
- Department of Philosophy, Duke University, Durham, NC27701, USA
| | | | | |
Collapse
|
5
|
Krahn J, Foris B, Sheng K, Weary DM, von Keyserlingk MAG. Effects of group size on agonistic interactions in dairy cows: a descriptive study. Animal 2024; 18:101083. [PMID: 38377807 DOI: 10.1016/j.animal.2024.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Group-housed cattle may engage in agonistic interactions over resources such as feed, which can negatively affect aspects of welfare. Little is known about how contextual factors such as group size influence agonistic behaviour. We explored the frequency of agonistic interactions at the feeder when cattle were housed in different-sized groups. We also explored the consistency of the directionality of agonistic interactions in dyads and of the number of agonistic interactions initiated by individuals across the group sizes. Four replicates of 50 cows each were assessed in two group-size phases. In Phase 1, cows were kept in one group of 50. In Phase 2, these same cows were divided into five groups of 10, maintaining stocking density (i.e., ratio of animals to lying stalls and feed bunk spaces). We measured agonistic replacements (i.e., interactions that result in one cow leaving the feed bin and another taking her place) at an electronic feeder using a validated algorithm. We used these data from Phase 1 to calculate individual Elo-ratings (a type of dominance score). Cows were then categorised into five dominance categories based upon these ratings. To ensure a consistent Elo-rating distribution between phases, two cows from each dominance category were randomly assigned to each small group of 10 cows. The mean ± SE number of replacements per cow was similar regardless of whether the cows were housed in groups of 50 (34.1 ± 2.4) or 10 (31.1 ± 4.5), although the groups of 10 were more variable. Further, 81.6 ± 7.7% (mean ± SD) of dyads had the same directionality across group sizes (i.e., the same individual won the majority of interactions in the dyad) and individuals were moderately consistent in the number of replacements they initiated (intraclass correlation coefficient = 0.62 ± 0.11; mean ± SD). These results indicate that the relationship between group size and agonistic behaviour is complex; we discuss these challenges and suggest new avenues for further research.
Collapse
Affiliation(s)
- Joseph Krahn
- 2357 Main Mall, Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z6, Canada
| | - Borbala Foris
- 2357 Main Mall, Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z6, Canada
| | - Kehan Sheng
- 2357 Main Mall, Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z6, Canada
| | - Daniel M Weary
- 2357 Main Mall, Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z6, Canada
| | - Marina A G von Keyserlingk
- 2357 Main Mall, Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z6, Canada.
| |
Collapse
|
6
|
Potegal M. How it ends: A review of behavioral and psychological phenomena, physiological processes and neural circuits in the termination of aggression in other animals and anger in people. Behav Brain Res 2024; 456:114676. [PMID: 37739229 DOI: 10.1016/j.bbr.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
More is known about aggression initiation and persistence in other animals, and anger in people, than about their cessation. This review summarizes knowledge of relevant factors in aggression, mostly in vertebrates, and anger termination in people. The latency, probability and intensity of offensive aggression in mice is controlled by activity in a neuronal subpopulation in ventromedial hypothalamus [VMH]. This activity instantiates an aggressive state termed angriffsbereitschaft ["attack-readiness"]. Fighting in many species is broken into bouts with interbout breaks due to fatigue and/or signals from dorsal raphe to VMH. Eventually, losers decide durations and outcomes of fighting by transitioning to submission or flight. Factors reducing angriffsbereitschaft and triggering these defeat behaviors could include metabolic costs, e.g., lactate accumulation and glucose depletion detected by the hypothalamus, central fatigue perhaps sensed by the Salience Network [insula and anterior cingulate gyrus] and pain of injuries, the latter insufficiently blunted by opioid and non-opioid stress analgesia and transduced by anterior VMH neurons. Winners' angriffsbereitschaft continue for awhile, as indicated by post-victory attacks and, perhaps, triumph displays of some species, including humans. In longer term situations, sensory and/or response habituation of aggression may explain the "Dear enemy" tolerance of competitive neighbors. Prolonged satiation of predatory behavior could involve habenula-regulated reduction of dopaminergic reward in nucleus accumbens. Termination of human anger involves at least three processes, metaphorically termed decay, quenching and catharsis. Hypothesized neural mechanisms include anger diminution by negative feedback from accumbens to anterior cingulate and/or activity in the Salience Network that controls anger's "accumulation/offset" phase.
Collapse
Affiliation(s)
- M Potegal
- University of Minnesota, United States.
| |
Collapse
|
7
|
Zipple MN, Hazelwood C, Webster MF, Benítez ME. Animal Emotions and Consciousness: Researchers' Perceptions, Biases, and Prospects for Future Progress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562087. [PMID: 37954928 PMCID: PMC10638804 DOI: 10.1101/2023.10.12.562087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Do animals have emotions? Scientists and philosophers have long struggled with this question, with debates ranging from whether animals experience an "internal world" to whether we are capable of studying it. Recently, theoretical, and methodological advances have rekindled this debate, yet, it is unclear where the scientific consensus on these topics lies today. To address this gap, we administered a survey of professional animal behavior researchers to assess perceptions regarding (1) the taxonomic distribution of emotions and consciousness in non-human animals, (2) respondents' confidence in this assessment, and (3) attitudes towards potential for progress and possible pitfalls when addressing these questions. In general, animal behavior researchers (n=100) ascribed emotionality and consciousness to a broad swath of the animal taxa, including non-human primates, other mammals, birds, and cephalopods, with varying degrees of confidence. There was a strong positive relationship between how likely a respondent was to attribute emotions to a given taxa and their confidence in that assessment, with respondents assuming an absence of emotions and consciousness when they were unsure. In addition, respondents' assessments were shaped by several traits (e.g., advanced cognitive abilities, consciousness) that they also admitted were not necessary for an animal to experience emotions. Ultimately, a large majority of researchers were optimistic that tools either currently exist or will exist in the future to rigorously address these questions (>85%) and that animal behavior, as a field, should do more to encourage emotions research (71%). We discuss implications of our findings for publication bias, ethical considerations, and identify an emergent consensus for the need of a functional definition of emotions to facilitate future work.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca NY, 14853
| | | | | | | |
Collapse
|
8
|
Nelson XJ, Taylor AH, Cartmill EA, Lyn H, Robinson LM, Janik V, Allen C. Joyful by nature: approaches to investigate the evolution and function of joy in non-human animals. Biol Rev Camb Philos Soc 2023; 98:1548-1563. [PMID: 37127535 DOI: 10.1111/brv.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered 'laughter' vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.
Collapse
Affiliation(s)
- Ximena J Nelson
- Private Bag 4800, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alex H Taylor
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys, 23, Barcelona, Spain
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erica A Cartmill
- Departments of Anthropology and Psychology, UCLA, 375 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Heidi Lyn
- Department of Psychology, University of South Alabama, 75 S. University Blvd., Mobile, AL, 36688, USA
| | - Lauren M Robinson
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Vincent Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, UK
| | - Colin Allen
- Department of History & Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| |
Collapse
|
9
|
Iki S, Adachi I. Fearful snake pictures make monkeys pessimistic. iScience 2023; 26:107622. [PMID: 37664603 PMCID: PMC10474457 DOI: 10.1016/j.isci.2023.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Judgment bias is the cognitive tendency of animals experiencing negative (or positive) affect to expect undesirable (or favorable) outcomes in ambiguous situations. The lack of examination of judgment biases induced by ecologically relevant stimuli hampers our understanding of the adaptive role of these biases. We examined whether predator-related stimuli, i.e., pictures of snakes, induce a pessimistic judgment bias in Japanese macaques (Macaca fuscata). Our subjects underwent a touchscreen-based Go/No-go judgment bias test. We found that the subjects were less likely and slower to make Go responses to ambiguous stimuli after viewing the snake pictures, indicating that pictures of snakes induce a pessimistic evaluation of ambiguous stimuli. In environments with high levels of threat, behavioral strategies that reduce risk-taking would be evolutionarily advantageous. Hence, an affective response system that lowers expectations of favorable outcomes in ambiguous situations after encountering threat-related stimuli would serve adaptive purposes, such as curbing excessive exploratory behavior.
Collapse
Affiliation(s)
- Sakumi Iki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ikuma Adachi
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
10
|
Elwood RW. Behavioural Indicators of Pain and Suffering in Arthropods and Might Pain Bite Back? Animals (Basel) 2023; 13:2602. [PMID: 37627393 PMCID: PMC10451332 DOI: 10.3390/ani13162602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pain in response to tissue damage functions to change behaviour so that further damage is minimised whereas healing and survival are promoted. This paper focuses on the behavioural criteria that match the function to ask if pain is likely in the main taxa of arthropods. There is evidence consistent with the idea of pain in crustaceans, insects and, to a lesser extent, spiders. There is little evidence of pain in millipedes, centipedes, scorpions, and horseshoe crabs but there have been few investigations of these groups. Alternative approaches in the study of pain are explored and it is suggested that studies on traumatic mating, agonistic interactions, and defensive venoms might provide clues about pain. The evolution of high cognitive ability, sensory systems, and flexible decision-making is discussed as well as how these might influence the evolution of pain-like states.
Collapse
Affiliation(s)
- Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
11
|
Elwood RW. Hermit crabs, shells, and sentience. Anim Cogn 2022; 25:1241-1257. [PMID: 35199235 DOI: 10.1007/s10071-022-01607-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Hermit crabs have an intimate relationship with gastropod shells and show numerous activities by which they locate, select, and change shells in different contexts. They gather information about new shells and update information about their existing shells. This involves integration of different sensory modalities, memory-formation, and comparison of the overall value of each shell. Crabs also fight to get shells from other crabs, and again they gather information about the shell qualities and the opponent. Attacking crabs monitor their fight performance, and defenders are influenced by attacker activities, and both crabs are influenced by the gain or loss that might be made by swapping shells. Swapping shells involves the defender being naked for a short period. Leaving a shell also occurs if the shell is experimentally fixed in place or buried in sand or if small electric shocks are applied to the abdomen, and the quality of the current shell is traded-off against escaping possible asphyxiation or the aversive shocks. Hermit crabs show remarkable abilities, involving future planning, with respect to recognizing the shape and size of shells, and how they limit their passage through environmental obstructions. They also assess if shells might become available and wait for that to happen. Groups of crabs arrange themselves in size order so that orderly transfer of shells might occur down a line of crabs. These observations are discussed in the light of complex perceptual and cognitive abilities, and the possibility of sentience and awareness is discussed.
Collapse
Affiliation(s)
- Robert W Elwood
- School of Biological Sciences, Queen's University, Belfast, BT9 5DL, UK.
| |
Collapse
|
12
|
Incentive disengagement and the adaptive significance of frustrative nonreward. Learn Behav 2022; 50:372-388. [DOI: 10.3758/s13420-022-00519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
|
13
|
Lee VE, Arnott G, Turner SP. Social behavior in farm animals: Applying fundamental theory to improve animal welfare. Front Vet Sci 2022; 9:932217. [PMID: 36032304 PMCID: PMC9411962 DOI: 10.3389/fvets.2022.932217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A fundamental understanding of behavior is essential to improving the welfare of billions of farm animals around the world. Despite living in an environment managed by humans, farm animals are still capable of making important behavioral decisions that influence welfare. In this review, we focus on social interactions as perhaps the most dynamic and challenging aspects of the lives of farm animals. Social stress is a leading welfare concern in livestock, and substantial variation in social behavior is seen at the individual and group level. Here, we consider how a fundamental understanding of social behavior can be used to: (i) understand agonistic and affiliative interactions in farm animals; (ii) identify how artificial environments influence social behavior and impact welfare; and (iii) provide insights into the mechanisms and development of social behavior. We conclude by highlighting opportunities to build on previous work and suggest potential fundamental hypotheses of applied relevance. Key areas for further research could include identifying the welfare benefits of socio–positive interactions, the potential impacts of disrupting important social bonds, and the role of skill in allowing farm animals to navigate competitive and positive social interactions. Such studies should provide insights to improve the welfare of farm animals, while also being applicable to other contexts, such as zoos and laboratories.
Collapse
Affiliation(s)
- Victoria E. Lee
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
- *Correspondence: Victoria E. Lee
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, United Kingdom
| | - Simon P. Turner
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
14
|
Impact of environmental complexity and stocking density on affective states of rainbow trout (Oncorhynchus mykiss). Anim Cogn 2022; 25:1331-1343. [DOI: 10.1007/s10071-022-01616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
|
15
|
Oldham L, Arnott G, Camerlink I, Doeschl-Wilson A, Farish M, Wemelsfelder F, Turner SP. Once bitten, twice shy: Aggressive and defeated pigs begin agonistic encounters with more negative emotions. Appl Anim Behav Sci 2021; 244:105488. [PMID: 34819712 PMCID: PMC8593554 DOI: 10.1016/j.applanim.2021.105488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/30/2023]
Abstract
Aggression between unfamiliar commercial pigs is common and likely invokes strong emotions in contestants. Furthermore, contest outcomes affect subsequent aggressive behaviour, suggesting a potential lasting influence on affective state. Here we used a combination of qualitative and quantitative methods to assess the emotional expression of pigs in agonistic encounters. We investigated how recent victory or defeat influences emotions expressed in a subsequent contest, and the role of aggressiveness as a personality trait in emotional expression. We observed the pre-escalation contest behaviour (second contest; age 13 wks) in animals of different aggressiveness (categorised using two resident intruder tests as Agg+ or Agg-, age 9 wks), which had recently won or lost a contest (first contest; 10 wks). We measured gaze direction and ear position. Observers watched video clips of the initial 30 s of the second contest and evaluated the emotional expression of 57 pigs (25 contest 1 winners, 32 contest 1 losers) using qualitative behavioural assessment (QBA) with a fixed list of 20 descriptive terms. QBA identified three principal components (PCs), accounting for 68% of the variation: PC1 (agitated/tense to relaxed/content), PC2 (fearful/aimless to confident/enjoying) and PC3 (listless/ indifferent). Agg- pigs and males showed a more positive emotionality (PC2). PC1 and PC3 were unaffected by first contest outcome and aggressiveness. Agg+ pigs were more likely to hold their ears back (X2 =7.8, p = 0.005) during the early contest period. Differences in attention were detected in the contest outcome × aggressiveness interaction (χ24.3, p = 0.04), whereby approaching the opponent was influenced by winning and losing in the Agg- pigs only. QBA and gaze behaviour reveal differences in emotional valence between pigs of different aggressiveness: less aggressive pigs may be more susceptible to the emotional impact of victory and defeat but overall, more aggressive pigs express more negative emotionality at the start of agonistic encounters.
Collapse
Affiliation(s)
- Lucy Oldham
- Animal Behaviour & Welfare, Animal and Veterinary Sciences Department, Scotland’s Rural College (SRUC), West Mains Rd, Edinburgh EH9 3JG, UK
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Irene Camerlink
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Ul. Postepu 36 A, Jastrzebiec, Magdalenka 05-552, Poland
| | - Andrea Doeschl-Wilson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Marianne Farish
- Animal Behaviour & Welfare, Animal and Veterinary Sciences Department, Scotland’s Rural College (SRUC), West Mains Rd, Edinburgh EH9 3JG, UK
| | - Francoise Wemelsfelder
- Animal Behaviour & Welfare, Animal and Veterinary Sciences Department, Scotland’s Rural College (SRUC), West Mains Rd, Edinburgh EH9 3JG, UK
| | - Simon P. Turner
- Animal Behaviour & Welfare, Animal and Veterinary Sciences Department, Scotland’s Rural College (SRUC), West Mains Rd, Edinburgh EH9 3JG, UK
| |
Collapse
|
16
|
Hubená P, Horký P, Slavík O. Fish self-awareness: limits of current knowledge and theoretical expectations. Anim Cogn 2021; 25:447-461. [PMID: 34655023 DOI: 10.1007/s10071-021-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Animal self-awareness is divided into three levels: bodily, social, and introspective self-awareness. Research has focused mainly on the introspection of so-called higher organisms such as mammals. Herein, we turn our attention to fish and provide opinions on their self-awareness based on a review of the scientific literature. Our specific aims are to discuss whether fish (A) could have a neural substrate supporting self-awareness and whether they display signs of (B) social and (C) introspective self-awareness. The present knowledge does not exclude the possibility that fish could have a simple neocortex or other structures that support certain higher cognitive processes, as the function of the primate cerebral cortex can be replaced by other neurological structures. Fish are known to display winner, loser, and audience effects, which could be interpreted as signs of social self-awareness. The audience effect may be explained not only by ethological cost and benefit theory but also by the concept of public self-awareness, which comes from human studies. The behavioural and neural manifestations of depression may be induced in fish under social subordination and may be viewed as certain awareness of a social status. The current findings on fish introspective self-awareness have been debated in the scientific community and, therefore, demand replication to provide more evidence. Further research is needed to verify the outlined ideas; however, the current knowledge indicates that fish are capable of certain higher cognitive processes, which raises questions and implications regarding ethics and welfare in fish-related research and husbandry.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| |
Collapse
|
17
|
Anderson MG, Campbell AM, Crump A, Arnott G, Jacobs L. Environmental complexity positively impacts affective states of broiler chickens. Sci Rep 2021; 11:16966. [PMID: 34417475 PMCID: PMC8379235 DOI: 10.1038/s41598-021-95280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Affective state can bias an animal's judgement. Animals in positive affective states can interpret ambiguous cues more positively ("optimistically") than animals in negative affective states. Thus, judgement bias tests can determine an animal's affective state through their responses to ambiguous cues. We tested the effects of environmental complexity and stocking density on affective states of broiler chickens through a multimodal judgement bias test. Broilers were trained to approach reinforced locations signaled by one color and not to approach unreinforced locations signaled by a different color. Trained birds were tested for latencies to approach three ambiguous cues of intermediate color and location. Broilers discriminated between cues, with shorter latencies to approach ambiguous cues closest to the reinforced cue than cues closest to the unreinforced cue, validating the use of the test in this context. Broilers housed in high-complexity pens approached ambiguous cues faster than birds in low-complexity pens-an optimistic judgement bias, suggesting the former were in a more positive affective state. Broilers from high-density pens tended to approach all cues faster than birds from low-density pens, possibly because resource competition in their home pen increased food motivation. Overall, our study suggests that environmental complexity improves broilers' affective states, implying animal welfare benefits of environmental enrichment.
Collapse
Affiliation(s)
- M. G. Anderson
- grid.438526.e0000 0001 0694 4940Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - A. M. Campbell
- grid.438526.e0000 0001 0694 4940Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - A. Crump
- grid.13063.370000 0001 0789 5319Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, London, UK
| | - G. Arnott
- grid.4777.30000 0004 0374 7521School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - L. Jacobs
- grid.438526.e0000 0001 0694 4940Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
18
|
Happy Cow or Thinking Pig? WUR Wolf—Facial Coding Platform for Measuring Emotions in Farm Animals. AI 2021. [DOI: 10.3390/ai2030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emotions play an indicative and informative role in the investigation of farm animal behaviors. Systems that respond and can measure emotions provide a natural user interface in enabling the digitalization of animal welfare platforms. The faces of farm animals can be one of the richest channels for expressing emotions. WUR Wolf (Wageningen University & Research: Wolf Mascot), a real-time facial recognition platform that can automatically code the emotions of farm animals, is presented in this study. The developed Python-based algorithms detect and track the facial features of cows and pigs, analyze the appearance, ear postures, and eye white regions, and correlate these with the mental/emotional states of the farm animals. The system is trained on a dataset of facial features of images of farm animals collected in over six farms and has been optimized to operate with an average accuracy of 85%. From these, the emotional states of animals in real time are determined. The software detects 13 facial actions and an inferred nine emotional states, including whether the animal is aggressive, calm, or neutral. A real-time emotion recognition system based on YoloV3, a Faster YoloV4-based facial detection platform and an ensemble Convolutional Neural Networks (RCNN) is presented. Detecting facial features of farm animals simultaneously in real time enables many new interfaces for automated decision-making tools for livestock farmers. Emotion sensing offers a vast potential for improving animal welfare and animal–human interactions.
Collapse
|
19
|
Abstract
Allowing dairy cattle to access pasture can promote natural behaviour and improve their health. However, the psychological benefits are poorly understood. We compared a cognitive indicator of emotion in cattle either with or without pasture access. In a crossover experiment, 29 Holstein-Friesian dairy cows had 18 days of overnight pasture access and 18 days of full-time indoor housing. To assess emotional wellbeing, we tested cows on a spatial judgement bias task. Subjects learnt to approach a rewarded bucket location, but not approach another, unrewarded bucket location. We then presented cows with three "probe" buckets intermediate between the trained locations. Approaching the probes reflected an expectation of reward under ambiguity-an "optimistic" judgement bias, suggesting positive emotional states. We analysed the data using linear mixed-effects models. There were no treatment differences in latency to approach the probe buckets, but cows approached the known rewarded bucket slower when they had pasture access than when they were indoors full-time. Our results indicate that, compared to cattle housed indoors, cattle with pasture access display less anticipatory behaviour towards a known reward. This reduced reward anticipation suggests that pasture is a more rewarding environment, which may induce more positive emotional states than full-time housing.
Collapse
|