1
|
Chamberlain JD, Clifton IT, Gifford ME. Variable juvenile growth rates and offspring size: a response to anthropogenic shifts in prey size among populations. Oecologia 2024; 206:163-173. [PMID: 39302347 DOI: 10.1007/s00442-024-05623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Environmental variables, such as resource quality, shape growth in organisms, dictating body size, an important correlate of fitness. Variation in prey characteristics among populations is frequently associated with similar variation in predator body sizes. Anthropogenic alterations to prey landscapes impose novel ecological pressures on predators that may shift predator phenotypes. Research has focused on determining the adaptability of the phenotypic response by testing its genetic heritability. Here, we asked if anthropogenic shifts in prey size across the landscape correlate with juvenile growth rates among populations of watersnakes with divergent life-history phenotypes. We sought to determine if growth rate variation is the product of genetic adaptation or a non-heritable phenotypic response. Using a common-garden design, we measured growth of neonate snakes from fish farms varying in prey size. We found juvenile growth rates are faster for snakes with larger initial body sizes and from populations with larger average prey sizes. Our data suggest variability in juvenile grow rates within and among populations are not the product of genetic adaptation, but the indirect consequence of initial offspring size variation and prey consumption. We propose larger offspring sizes may favor increased juvenile growth rates, mediated through a larger morphological capacity to consume and process energy resources relative to smaller individuals. This experiment provides evidence supporting the growing body of literature that non-heritable responses may be significant drivers of rapid phenotypic divergence among populations across a landscape. This mechanism may explain the stability and colonization of populations in response to rapid, human-mediated, landscape changes.
Collapse
Affiliation(s)
| | - Ian T Clifton
- Department of Biology, University of Arkansas at Little Rock, Little Rock, USA
| | | |
Collapse
|
2
|
Olazcuaga L, Foucaud J, Deschamps C, Loiseau A, Claret J, Vedovato R, Guilhot R, Sévely C, Gautier M, Hufbauer RA, Rode NO, Estoup A. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evol Lett 2022; 6:490-505. [PMID: 36579160 PMCID: PMC9783429 DOI: 10.1002/evl3.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Both local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear. Here, we used Drosophila suzukii as a model system to evaluate the relative influence of genetic and plastic effects on the match of populations to environments with periods of stability from three to four generations. This invasive pest insect can develop within different fruits, and persists throughout the year in a given location on a succession of distinct host fruits, each one being available for only a few generations. Using reciprocal common environment experiments of natural D. suzukii populations collected from cherry, strawberry, and blackberry, we found that both oviposition preference and offspring performance were higher on medium made with the fruit from which the population originated than on media made with alternative fruits. This pattern, which remained after two generations in the laboratory, was analyzed using a statistical method we developed to quantify the contributions of local adaptation and adaptive plasticity in determining fitness. Altogether, we found that genetic effects (local adaptation) dominate over plastic effects (adaptive phenotypic plasticity). Our study demonstrates that spatially and temporally variable selection does not prevent the rapid evolution of local adaptation in natural populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France,Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Julien Foucaud
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Candice Deschamps
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Jean‐Loup Claret
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Romain Vedovato
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Cyril Sévely
- Chambre d'agriculture de l'HéraultLattes34875France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA,Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80523USA
| | - Nicolas O. Rode
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Arnaud Estoup
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| |
Collapse
|
3
|
Tomović L, Anđelković M, Golubović A, Arsovski D, Ajtić R, Sterijovski B, Nikolić S, Crnobrnja-Isailović J, Lakušić M, Bonnet X. Dwarf vipers on a small island: body size, diet and fecundity correlates. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Insular populations offer excellent opportunities to study the factors that influence phenotypes. We observed island dwarfism in a widespread snake, the nose-horned viper (Vipera ammodytes). Island vipers were ~20% smaller than mainland individuals. They also produced fewer and smaller offspring. In snakes, food availability has a positive influence on body size, fecundity and offspring size. Consequently, low energy intake is a plausible explanation for insular dwarfism. The diet of island vipers was principally represented by lizards and centipedes, whereas the most profitable prey items (e.g. rodents) were regularly found in the stomach of mainland vipers. Furthermore, the proportion of individuals captured with a full stomach and good body condition were lower on the island compared with the mainland. Thus, island vipers were likely to be experiencing permanent energy restriction, with cascading effects on adult body size and reproductive output. Large prey promotes high relative jaw length in snakes. Island vipers displayed smaller relative jaw length compared with mainland populations, suggesting that plasticity played a role in insular dwarfism. But the difference in relative tail length between island and mainland populations, a trait not subjected to food-induced plasticity, indicates local adaptation. Both plasticity and adaptation might influence the phenotype of island vipers.
Collapse
Affiliation(s)
- Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade , Studentski trg, Belgrade , Serbia
| | - Marko Anđelković
- Institute for Biological Research ‘Siniša Stanković’ – National Institute of Republic of Serbia, University of Belgrade , Bulevar despota Stefana, Belgrade , Serbia
| | - Ana Golubović
- Institute of Zoology, Faculty of Biology, University of Belgrade , Studentski trg, Belgrade , Serbia
| | - Dragan Arsovski
- Macedonian Ecological Society , Arhimedova, Skopje , North Macedonia
| | - Rastko Ajtić
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Kragujevac , Radoja Domanovića, Kragujevac , Serbia
| | | | - Sonja Nikolić
- Institute of Zoology, Faculty of Biology, University of Belgrade , Studentski trg, Belgrade , Serbia
| | - Jelka Crnobrnja-Isailović
- Institute for Biological Research ‘Siniša Stanković’ – National Institute of Republic of Serbia, University of Belgrade , Bulevar despota Stefana, Belgrade , Serbia
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Niš , Višegradska, Niš , Serbia
| | - Margareta Lakušić
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources of the University of Porto , Vairão , Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão , Vairão , Portugal
| | - Xavier Bonnet
- CEBC, UMR-7372, CNRS Université de La Rochelle , Villiers en Bois , France
| |
Collapse
|
4
|
Divergence in life-history traits among three adjoining populations of the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae). Sci Rep 2022; 12:5137. [PMID: 35332205 PMCID: PMC8948236 DOI: 10.1038/s41598-022-09130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
Life-history traits such as rates of growth, survival and reproduction can vary though time within a single population, or through space among populations, due to abiotically-driven changes in resource availability. In terrestrial reptiles, parameters such as temperature and rainfall generate variation in life-histories—but other parameters likely are more important in marine systems. We studied three populations of sea snakes (Emydocephalus annulatus) in adjacent bays in the IndoPacific archipelago of New Caledonia. The extreme philopatry of individual snakes allows us to unambiguously allocate each animal to one of the three populations. Although water temperatures and rainfall do not differ over this small scale, one site experiences more intense winds, restricting opportunities for foraging. Our 18-year mark-recapture dataset (> 1,200 snakes, > 2,400 captures) reveals significant divergence among populations in life-history traits. Survival rates and population densities were similar among sites, but snakes at the most wind-exposed site (Anse Vata) exhibited lower body condition, slower growth, less frequent production of litters, and smaller litters. Weather-driven variation in feeding rates thus may affect life-history traits of marine snakes as well as their terrestrial counterparts, but driven by different parameters (e.g., wind exposure rather than variation in temperatures or rainfall).
Collapse
|
5
|
Bonnet X, Brischoux F, Briand M, Shine R. Plasticity matches phenotype to local conditions despite genetic homogeneity across 13 snake populations. Proc Biol Sci 2021; 288:20202916. [PMID: 33499786 DOI: 10.1098/rspb.2020.2916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a widespread species, a matching of phenotypic traits to local environmental optima is generally attributed to site-specific adaptation. However, the same matching can occur via adaptive plasticity, without requiring genetic differences among populations. Adult sea kraits (Laticauda saintgironsi) are highly philopatric to small islands, but the entire population within the Neo-Caledonian Lagoon is genetically homogeneous because females migrate to the mainland to lay their eggs at communal sites; recruits disperse before settling, mixing up alleles. Consequently, any matching between local environments (e.g. prey sizes) and snake phenotypes (e.g. body sizes and relative jaw sizes (RJSs)) must be achieved via phenotypic plasticity rather than spatial heterogeneity in gene frequencies. We sampled 13 snake colonies spread along an approximately 200 km northwest-southeast gradient (n > 4500 individuals) to measure two morphological features that affect maximum ingestible prey size in gape-limited predators: body size and RJS. As proxies of habitat quality (HQ), we used protection status, fishing pressure and lagoon characteristics (lagoon width and distance of islands to the barrier reef). In both sexes, spatial variation in body sizes and RJSs was linked to HQ; albeit in different ways, consistent with sex-based divergences in foraging ecology. Strong spatial divergence in morphology among snake colonies, despite genetic homogeneity, supports the idea that phenotypic plasticity can facilitate speciation by creating multiple phenotypically distinct subpopulations shaped by their environment.
Collapse
Affiliation(s)
- Xavier Bonnet
- CEBC, UMR 7372 CNRS and University of La Rochelle, 79360 Villiers en Bois, France
| | - François Brischoux
- CEBC, UMR 7372 CNRS and University of La Rochelle, 79360 Villiers en Bois, France
| | | | - Richard Shine
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|