1
|
Wibisana JN, Sallan RA, Ota T, Puchenkov P, Kubo T, Sallan L. Modifiable Clinical Dental Impression Methods to Obtain Whole-Mouth and Detailed Dental Traits From Vertebrates. J Morphol 2025; 286:e70017. [PMID: 39722196 DOI: 10.1002/jmor.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Dental impressions, developed for accurate capture of oral characteristics in human clinical settings, are seldom used in research on nonlivestock, nonprimate, and especially nonmammalian vertebrates due to a lack of appropriate tools. Studies of dentitions in most vertebrate species usually require euthanasia and specimen dissection, microCT and other scans with size and resolution tradeoffs, and/or ad-hoc individual impressions or removal of single teeth. These approaches prevent in-vivo studies that factor in growth and other chronological changes and separate teeth from the context of the whole mouth. Here, we describe a non-destructive method for obtaining high-resolution dentition-related traits that can be used on both living animals and museum specimens for almost all vertebrates, involving a customizable and printable dental impression tray. This method has repeatedly and accurately captured whole-mouth morphology and detailed features at high resolution in the living non-teleost actinopterygian fish, Polypterus senegalus, in a laboratory setting. It can be used for comparative morphology and to observe temporal changes such as the presence of microwear, tooth replacement rates, and occlusal and morphological changes through ontogeny.
Collapse
Affiliation(s)
- Johannes N Wibisana
- Macroevolution Unit, Okinawa Institute of Science of Technology, Onna-son, Okinawa, Japan
| | - Ray A Sallan
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Towa Ota
- Macroevolution Unit, Okinawa Institute of Science of Technology, Onna-son, Okinawa, Japan
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Pavel Puchenkov
- Scientific Computing and Data Analysis Section, Core Facilities, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Tai Kubo
- Macroevolution Unit, Okinawa Institute of Science of Technology, Onna-son, Okinawa, Japan
| | - Lauren Sallan
- Macroevolution Unit, Okinawa Institute of Science of Technology, Onna-son, Okinawa, Japan
| |
Collapse
|
2
|
Cohen KE, Fitzpatrick AR, Huie JM. Dental Dynamics: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer. Integr Org Biol 2024; 6:obae015. [PMID: 39045422 PMCID: PMC11263487 DOI: 10.1093/iob/obae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
Collapse
Affiliation(s)
- K E Cohen
- California State University Fullerton, Biological Science, Fullerton, CA 98231, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Museum of Natural History, Gainesville, FL 32611, USA
| | - A R Fitzpatrick
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - J M Huie
- Department of Biology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Arnette SD, Simonitis LE, Egan JP, Cohen KE, Kolmann MA. True grit? Comparative anatomy and evolution of gizzards in fishes. J Anat 2024; 244:260-273. [PMID: 37770122 PMCID: PMC10780153 DOI: 10.1111/joa.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Gut morphology frequently reflects the food organisms digest. Gizzards are organs of the gut found in archosaurs and fishes that mechanically reduce food to aid digestion. Gizzards are thought to compensate for edentulism and/or provide an advantage when consuming small, tough food items (e.g., phytoplankton and algae). It is unknown how widespread gizzards are in fishes and how similar these structures are among different lineages. Here, we investigate the distribution of gizzards across bony fishes to (1) survey different fishes for gizzard presence, (2) compare the histological structure of gizzards in three species, (3) estimate how often gizzards have evolved in fishes, and (4) explore whether anatomical and ecological traits like edentulism and microphagy predict gizzard presence. According to our analyses, gizzards are rare across bony fishes, evolving only six times in a broad taxonomic sampling of 51 species, and gizzard presence is not clearly correlated with factors like gut length or dentition. We find that gizzard morphology varies among the lineages where one is present, both macroscopically (presence of a crop) and microscopically (varying tissue types). We conclude that gizzards likely aid in the mechanical reduction of food in fishes that have lost an oral dentition in their evolutionary past; however, the relative scarcity of gizzards suggests they are just one of many possible solutions for processing tough, nutrient-poor food items. Gizzards have long been present in the evolutionary history of fishes, can be found in a wide variety of marine and freshwater clades, and likely have been overlooked in many taxa.
Collapse
Affiliation(s)
- S D Arnette
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
| | - L E Simonitis
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
- Florida Atlantic University, Boca Raton, Florida, USA
| | - J P Egan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, Minnesota, USA
| | - K E Cohen
- University of Florida, Gainesville, Florida, USA
| | - M A Kolmann
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Huang R, Tang L, Li R, Li Y, Zhan L, Huang X. Tooth pattern, development, and replacement in the yellow catfish, Pelteobagrus fulvidraco. J Morphol 2024; 285:e21657. [PMID: 38100745 DOI: 10.1002/jmor.21657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Studies of teleost teeth are important for understanding the evolution and mechanisms of tooth development, replacement, and regeneration. Here, we used gross specimens, microcomputed tomography, and histological analysis to characterize tooth structure, development, and resorption patterns in adult Pelteobagrus fulvidraco. The oral and pharyngeal teeth are villiform and conical. Multiple rows of dentition are densely distributed and the tooth germ is derived from the epithelium. P. fulvidraco exhibits a discontinuous and non-permanent dental lamina. Epithelial cells surround the teeth and are separated into distinct tooth units by mesenchymal tissue. Tooth development is completed in the form of independent tooth units. P. fulvidraco does not undergo simultaneous tooth replacement. Based on tooth development and resorption status, five forms of teeth are present in adult P. fulvidraco: developing tooth germs, accompanied by relatively immature tooth germs; mature and well-mineralized tooth accompanied by one tooth germ; teeth that have begun resorption, but not completely fractured; fractured teeth with only residual attachment to the underlying bone; and teeth that are completely resorbed and detached. Seven biological stages of a tooth in P. fulvidraco were also described.
Collapse
Affiliation(s)
- Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ruiqi Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfeng Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liping Zhan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Palecek A. Broken teeth? Fish dentists hate this one simple trick. J Exp Biol 2022. [DOI: 10.1242/jeb.243391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|