1
|
Deeti S, Cheng K. Desert ants (Melophorus bagoti) oscillate and scan more in navigation when the visual scene changes. Anim Cogn 2025; 28:15. [PMID: 39979462 PMCID: PMC11842525 DOI: 10.1007/s10071-025-01936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Solitarily foraging ants learn to navigate between important locations by comparing their current view with memorized scenes along a familiar route. As desert ants, in particular, travel between their nest and a food source, they establish stable and visually guided routes that guide them without relying on trail pheromones. We investigated how changes in familiar visual scenes affect the navigation of the red honey ant (Melophorus bagoti). In Experiment 1, ants were trained to follow a one-way diamond-shaped path to forage and return home. We manipulated scene familiarity by adding a board on their homebound route just before the nest. In Experiment 2, ants were trained to travel a straight path from their nest to a feeder, and we removed the prominent landmarks on the route after they had established a stable route. We predicted that these scene changes would cause the ants to deviate from their usual straight paths, slow down, scan more, and increase their lateral oscillations to gather additional information. Our findings showed that when the familiar scene was changed, ants oscillated more, slowed their speed, and increased scanning bouts, indicating a shift from exploiting known information to more actively exploring and learning new visual cues. These results suggest that scene familiarity plays a crucial role in ant navigation, and changes in their visual environment lead to distinct behavioral adaptations aimed at learning about the new cues.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
2
|
Deeti S, Man W, Le Roux JJ, Cheng K. Inter-turn intervals in Paramecium caudatum display an exponential distribution. Commun Integr Biol 2024; 17:2360961. [PMID: 38831849 PMCID: PMC11146437 DOI: 10.1080/19420889.2024.2360961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
In navigating to a better location, mobile organisms in diverse taxa change directions of travel occasionally, including bacteria, archaea, single-celled eukaryotes, and small nematode worms such as Caenorhabditis elegans. In perhaps the most common form of goal-orientated movement, the rate of such turns is adjusted in all these taxa to ascend (or descend) a chemical gradient. Basically, the rate of turns is reduced when the movement results in better conditions. In the bacterium Escherichia coli and in C. elegans, the turns are generated by random-rate processes, in which the probability of a turn occurring is constant at every moment. This is evidenced by a distribution of inter-turn intervals that has an exponential distribution. For the first time, we examined the distribution of inter-turn intervals in the single-celled eukaryote, Paramecium caudatum, in a class exercise for first-year university students. We found clear evidence for an exponential distribution of inter-turn intervals, implying a random-rate process in generating turns in Paramecium. The exercise also shows that university laboratory classes can be used to generate scientific data to address research questions whose answers are as yet unknown.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Winnie Man
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Zhu Y, Gelnaw H, Auer F, Hamling KR, Ehrlich DE, Schoppik D. A brainstem circuit for gravity-guided vertical navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584680. [PMID: 38559209 PMCID: PMC10980031 DOI: 10.1101/2024.03.12.584680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The sensation of gravity anchors our perception of the environment and is crucial for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to inefficient vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily-conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move efficiently through their environment.
Collapse
Affiliation(s)
- Yunlu Zhu
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Franziska Auer
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David E. Ehrlich
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
4
|
Bingman VP, Gagliardo A. A different perspective on avian hippocampus function: Visual-spatial perception. Learn Behav 2024; 52:60-68. [PMID: 37653225 DOI: 10.3758/s13420-023-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
The behavioral and neural mechanisms that support spatial cognition have been an enduring interest of psychologists, and much of that enduring interest is attributable to the groundbreaking research of Ken Cheng. One manifestation of this interest, inspired by the idea of studying spatial cognition under natural field conditions, has been research carried out to understand the role of the avian hippocampal formation (HF) in supporting homing pigeon navigation. Emerging from that research has been the conclusion that the role of HF in homing pigeon navigation aligns well with the canonical narrative of a hippocampus important for spatial memory and the implementation of such memories to support navigation. However, recently an accumulation of disparate observations has prompted a rethinking of the avian HF as a structure also important in shaping visual-spatial perception or attention antecedent to any memory processing. In this perspective paper, we summarize field observations contrasting the behavior of intact and HF-lesioned homing pigeons from several studies, based primarily on GPS-recorded flight paths, that support a recharacterization of HF's functional profile to include visual-spatial perception. Although admittedly still speculative, we hope the offered perspective will motivate controlled, experimental-laboratory studies to further test the hypothesis of a HF important for visual-perceptual integration, or scene construction, of landscape elements in support of navigation.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, 43403, USA.
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | | |
Collapse
|
5
|
Abstract
A fundamental question in the development of animal models of episodic memory concerns the role of temporal processes in episodic memory. Gallistel, (1990) developed a framework in which animals remember specific features about an event, including the time of occurrence of the event and its location in space. Gallistel proposed that timing is based on a series of biological oscillators, spanning a wide range of periods. Accordingly, a snapshot of the phases of multiple oscillators provides a representation of the time of occurrence of the event. I review research on basic timing mechanisms that may support memory for times of occurrence. These studies suggest that animals use biological oscillators to represent time. Next, I describe recently developed animal models of episodic memory that highlight the importance of temporal representations in memory. One line of research suggests that an oscillator representation of time supports episodic memory. A second line of research highlights the flow of events in time in episodic memory. Investigations that integrate time and memory may advance the development of animal models of episodic memory.
Collapse
Affiliation(s)
- Jonathon D Crystal
- Department of Psychological & Brain Science, Indiana University, 1101 E 10TH ST, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Freas CA, Spetch ML. A special issue honoring Ken Cheng: navigating animal minds. Learn Behav 2024; 52:9-13. [PMID: 38231427 DOI: 10.3758/s13420-024-00624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Affiliation(s)
- Cody A Freas
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Freas CA, Spetch ML. Directed retreat and navigational mechanisms in trail following Formica obscuripes. Learn Behav 2024; 52:114-131. [PMID: 37752304 PMCID: PMC10923983 DOI: 10.3758/s13420-023-00604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Ant species exhibit behavioural commonalities when solving navigational challenges for successful orientation and to reach goal locations. These behaviours rely on a shared toolbox of navigational strategies that guide individuals under an array of motivational contexts. The mechanisms that support these behaviours, however, are tuned to each species' habitat and ecology with some exhibiting unique navigational behaviours. This leads to clear differences in how ant navigators rely on this shared toolbox to reach goals. Species with hybrid foraging structures, which navigate partially upon a pheromone-marked column, express distinct differences in their toolbox, compared to solitary foragers. Here, we explore the navigational abilities of the Western Thatching ant (Formica obscuripes), a hybrid foraging species whose navigational mechanisms have not been studied. We characterise their reliance on both the visual panorama and a path integrator for orientation, with the pheromone's presence acting as a non-directional reassurance cue, promoting continued orientation based on other strategies. This species also displays backtracking behaviour, which occurs with a combination of unfamiliar terrestrial cues and the absence of the pheromone, thus operating based upon a combination of the individual mechanisms observed in solitarily and socially foraging species. We also characterise a new form of goalless orientation in these ants, an initial retreating behaviour that is modulated by the forager's path integration system. The behaviour directs disturbed inbound foragers back along their outbound path for a short distance before recovering and reorienting back to the nest.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2113, Australia.
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Jeffery KJ, Cheng K, Newcombe NS, Bingman VP, Menzel R. Unpacking the navigation toolbox: insights from comparative cognition. Proc Biol Sci 2024; 291:20231304. [PMID: 38320615 PMCID: PMC10846957 DOI: 10.1098/rspb.2023.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The study of navigation is informed by ethological data from many species, laboratory investigation at behavioural and neurobiological levels, and computational modelling. However, the data are often species-specific, making it challenging to develop general models of how biology supports behaviour. Wiener et al. outlined a framework for organizing the results across taxa, called the 'navigation toolbox' (Wiener et al. In Animal thinking: contemporary issues in comparative cognition (eds R Menzel, J Fischer), pp. 51-76). This framework proposes that spatial cognition is a hierarchical process in which sensory inputs at the lowest level are successively combined into ever-more complex representations, culminating in a metric or quasi-metric internal model of the world (cognitive map). Some animals, notably humans, also use symbolic representations to produce an external representation, such as a verbal description, signpost or map that allows communication of spatial information or instructions between individuals. Recently, new discoveries have extended our understanding of how spatial representations are constructed, highlighting that the hierarchical relationships are bidirectional, with higher levels feeding back to influence lower levels. In the light of these new developments, we revisit the navigation toolbox, elaborate it and incorporate new findings. The toolbox provides a common framework within which the results from different taxa can be described and compared, yielding a more detailed, mechanistic and generalized understanding of navigation.
Collapse
Affiliation(s)
- Kate J. Jeffery
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nora S. Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Randolf Menzel
- Institute for Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Cheng K. Oscillators and servomechanisms in navigation and orientation. Commun Integr Biol 2023; 17:2293268. [PMID: 38173690 PMCID: PMC10761010 DOI: 10.1080/19420889.2023.2293268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
I summarize my recent theorizing on orientation and navigation across life. Organisms use navigational servomechanisms working with oscillators to get to goals. Navigational servomechanisms track errors from the best direction of travel and initiate action to correct the error. They work with endogenously generated action patterns, oscillations produced by oscillators, to adjust the course of travel. The theme applies to all scales of life from micrometers to thousands of kilometers. Servomechanisms and oscillators also characterize some other domains of cognition.
Collapse
Affiliation(s)
- Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Reid CR. Thoughts from the forest floor: a review of cognition in the slime mould Physarum polycephalum. Anim Cogn 2023; 26:1783-1797. [PMID: 37166523 PMCID: PMC10770251 DOI: 10.1007/s10071-023-01782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Sensing, communication, navigation, decision-making, memory and learning are key components in a standard cognitive tool-kit that enhance an animal's ability to successfully survive and reproduce. However, these tools are not only useful for, or accessible to, animals-they evolved long ago in simpler organisms using mechanisms which may be either unique or widely conserved across diverse taxa. In this article, I review the recent research that demonstrates these key cognitive abilities in the plasmodial slime mould Physarum polycephalum, which has emerged as a model for non-animal cognition. I discuss the benefits and limitations of comparisons drawn between neural and non-neural systems, and the implications of common mechanisms across wide taxonomic divisions. I conclude by discussing future avenues of research that will draw the most benefit from a closer integration of Physarum and animal cognition research.
Collapse
Affiliation(s)
- Chris R Reid
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
12
|
Wan KY. Active oscillations in microscale navigation. Anim Cogn 2023; 26:1837-1850. [PMID: 37665482 PMCID: PMC10769930 DOI: 10.1007/s10071-023-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Living organisms routinely navigate their surroundings in search of better conditions, more food, or to avoid predators. Typically, animals do so by integrating sensory cues from the environment with their locomotor apparatuses. For single cells or small organisms that possess motility, fundamental physical constraints imposed by their small size have led to alternative navigation strategies that are specific to the microscopic world. Intriguingly, underlying these myriad exploratory behaviours or sensory functions is the onset of periodic activity at multiple scales, such as the undulations of cilia and flagella, the vibrations of hair cells, or the oscillatory shape modes of migrating neutrophils. Here, I explore oscillatory dynamics in basal microeukaryotes and hypothesize that these active oscillations play a critical role in enhancing the fidelity of adaptive sensorimotor integration.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.
| |
Collapse
|
13
|
Affiliation(s)
- Pamela Lyon
- Faculty of Arts, Business, Law and Economics, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
14
|
Deeti S, Cheng K, Graham P, Wystrach A. Scanning behaviour in ants: an interplay between random-rate processes and oscillators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01628-8. [PMID: 37093284 DOI: 10.1007/s00359-023-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
At the start of a journey home or to a foraging site, ants often stop, interrupting their forward movement, turn on the spot a number of times, and fixate in different directions. These scanning bouts are thought to provide visual information for choosing a path to travel. The temporal organization of such scanning bouts has implications about the neural organisation of navigational behaviour. We examined (1) the temporal distribution of the start of such scanning bouts and (2) the dynamics of saccadic body turns and fixations that compose a scanning bout in Australian desert ants, Melophorus bagoti, as they came out of a walled channel onto open field at the start of their homeward journey. Ants were caught when they neared their nest and displaced to different locations to start their journey home again. The observed parameters were mostly similar across familiar and unfamiliar locations. The turning angles of saccadic body turning to the right or left showed some stereotypy, with a peak just under 45°. The direction of such saccades appears to be determined by a slow oscillatory process as described in other insect species. In timing, however, both the distribution of inter-scanning-bout intervals and individual fixation durations showed exponential characteristics, the signature for a random-rate or Poisson process. Neurobiologically, therefore, there must be some process that switches behaviour (starting a scanning bout or ending a fixation) with equal probability at every moment in time. We discuss how chance events in the ant brain that occasionally reach a threshold for triggering such behaviours can generate the results.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Antoine Wystrach
- Centre de Recherches Sur La Cognition Animale, CBI, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
15
|
Layfield D, Sidell N, Blankenberger K, Newman EL. Hippocampal inactivation during rearing on hind legs impairs spatial memory. Sci Rep 2023; 13:6136. [PMID: 37061540 PMCID: PMC10105745 DOI: 10.1038/s41598-023-33209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory.
Collapse
Affiliation(s)
- Dylan Layfield
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Kevin Blankenberger
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| |
Collapse
|
16
|
Farnsworth KD, Elwood RW. Why it hurts: with freedom comes the biological need for pain. Anim Cogn 2023:10.1007/s10071-023-01773-2. [PMID: 37029847 DOI: 10.1007/s10071-023-01773-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
We argue that pain is not needed to protect the body from damage unless the organism is able to make free choices in action selection. Then pain (including its affective and evaluative aspects) provides a necessary prioritising motivation to select actions expected to avoid it, whilst leaving the possibility of alternative actions to serve potentially higher priorities. Thus, on adaptive grounds, only organisms having free choice over action selection should experience pain. Free choice implies actions must be selected following appraisal of their effects, requiring a predictive model generating estimates of action outcomes. These features give organisms anticipatory behavioural autonomy (ABA), for which we propose a plausible system using an internal predictive model, integrated into a system able to produce the qualitative and affective aspects of pain. Our hypothesis can be tested using behavioural experiments designed to elicit trade-off responses to novel experiences for which algorithmic (automaton) responses might be inappropriate. We discuss the empirical evidence for our hypothesis among taxonomic groups, showing how testing for ABA guides thinking on which groups might experience pain. It is likely that all vertebrates do and plausible that some invertebrates do (decapods, cephalopods and at least some insects).
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK.
| | - Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK
| |
Collapse
|
17
|
Hunt GR, Villard P. Oscillatory extraction behaviour suggests functional attributes of crows' hooked-stick tools. Anim Cogn 2023; 26:1091-1095. [PMID: 36720748 DOI: 10.1007/s10071-023-01749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/28/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
New Caledonian crows are the only nonhuman animals known to craft hooked-sticks for use in foraging. Since their first description over 25 years ago, researchers have been unable to provide a detailed account of how these complex tools function in natural probe sites. Using close-up video footage, we document how a New Caledonian crow operated a hooked-stick to extract a large tree weta from a chamber in a tree trunk. The extraction technique had two distinct, separate components: (1) simultaneous oscillating head rotation and reciprocating bill action, and (2) measured pulling with the tool. Analysis of this first detailed field observation of hooked-stick use suggests a link between hooked-stick tool characteristics, functionality and skilled manipulation in natural prey extraction by these technological birds. Our findings also provide a rare, if not novel, example of tool-associated oscillatory manipulation in nonhuman animals.
Collapse
|
18
|
From representations to servomechanisms to oscillators: my journey in the study of cognition. Anim Cogn 2023; 26:73-85. [PMID: 36029388 PMCID: PMC9877067 DOI: 10.1007/s10071-022-01677-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
The study of comparative cognition bloomed in the 1970s and 1980s with a focus on representations in the heads of animals that undergird what animals can achieve. Even in action-packed domains such as navigation and spatial cognition, a focus on representations prevailed. In the 1990s, I suggested a conception of navigation in terms of navigational servomechanisms. A servomechanism can be said to aim for a goal, with deviations from the goal-directed path registering as an error. The error drives action to reduce the error in a negative-feedback loop. This loop, with the action reducing the very signal that drove action in the first place, is key to defining a servomechanism. Even though actions are crucial components of servomechanisms, my focus was on the representational component that encodes signals and evaluates errors. Recently, I modified and amplified this view in claiming that, in navigation, servomechanisms operate by modulating the performance of oscillators, endogenous units that produce periodic action. The pattern is found from bacteria travelling micrometres to sea turtles travelling thousands of kilometres. This pattern of servomechanisms working with oscillators is found in other realms of cognition and of life. I think that oscillators provide an effective way to organise an organism's own activities while servomechanisms provide an effective means to adjust to the organism's environment, including that of its own body.
Collapse
|
19
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|