1
|
Wang B, Mao Z, Chen Y, Ying J, Wang H, Sun Z, Li J, Zhang C, Zhuo J. Identification and Functional Analysis of the fruitless Gene in a Hemimetabolous Insect, Nilaparvata lugens. INSECTS 2024; 15:262. [PMID: 38667392 PMCID: PMC11050625 DOI: 10.3390/insects15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The fruitless (fru) gene functions as a crucial "tuner" in male insect courtship behavior through distinct expression patterns. In Nilaparvata lugens, our previous research showed doublesex (dsx) influencing male courtship songs, causing mating failures with virgin females. However, the impact of fru on N. lugens mating remains unexplored. In this study, the fru homolog (Nlfru) in N. lugens yielded four spliceosomes: Nlfru-374-a/b, Nlfru-377, and Nlfru-433, encoding proteins of 374aa, 377aa, and 433aa, respectively. Notably, only Nlfru-374b exhibited male bias, while the others were non-sex-specific. All NlFRU proteins featured the BTB conserved domain, with NlFRU-374 and NlFRU-377 possessing the ZnF domain with different sequences. RNAi-mediated Nlfru or its isoforms' knockdown in nymph stages blocked wing-flapping behavior in mating males, while embryonic knockdown via maternal RNAi resulted in over 80% of males losing wing-flapping ability, and female receptivity was reduced. Nlfru expression was Nldsx-regulated, and yet courtship signals and mating success were unaffected. Remarkably, RNAi-mediated Nlfru knockdown up-regulated the expression of flightin in macropterous males, which regulated muscle stiffness and delayed force response, suggesting Nlfru's involvement in muscle development regulation. Collectively, our results indicate that Nlfru functions in N. lugens exhibit a combination of conservation and species specificity, contributing insights into fru evolution, particularly in Hemiptera species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jichong Zhuo
- State Key Laboratory for ManagingBiotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (B.W.); (Z.M.); (Y.C.); (J.Y.); (H.W.); (Z.S.); (J.L.); (C.Z.)
| |
Collapse
|
2
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Chen B, Kou Z, Jiang Y, Luo X, Li P, Sun K, Wang W, Huang Y, Wang Y. Intersex is required for female sexual development in Hermetia illucens. INSECT SCIENCE 2023; 30:901-911. [PMID: 36719198 DOI: 10.1111/1744-7917.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Sex-determination pathways are extremely diverse. Understanding the mechanism of sex determination in insects is important for genetic manipulation of the pest population and for breeding of economically valuable insects. Although sex determination has been well characterized in the model species Drosophila melanogaster, little is known about this pathway in Stratiomyidae. In the present study, we first identified the Drosophila intersex (ix) homolog in Hermetia illucens, also known as the black soldier fly, which belongs to the Stratiomyidae family and which is an important insect for the conversion of various organic wastes. Phylogenetic analyses and multiple sequence alignment revealed that Hiix is conserved compared with Drosophila. We showed that Hiix is highly expressed in internal genitalia. Disruption of the Hiix gene using CRISPR/Cas9 resulted in female-specific defects in external genitalia and abnormal and undersized ovaries. Taken together, our study furthers our understanding of sex determination in insects and could facilitate breeding of H. illucens.
Collapse
Affiliation(s)
- Bihui Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zongqing Kou
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuguo Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Peili Li
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Kaiji Sun
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Weiwei Wang
- Beijing Dabeinong Technology Group Co., ltd., No. 19, Chengwan Street, Suyier Village, Sujiatuo Town, Haidian District, Beijing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|