1
|
Straub F, Birkenbach M, Boesing AL, Manning P, Olsson O, Kuppler J, Wilfert L, Ayasse M. Local and landscape factors differently influence health and pollination services in two important pollinator groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178330. [PMID: 39752984 DOI: 10.1016/j.scitotenv.2024.178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear. Using a long-term biodiversity research platform, the German Biodiversity Exploratories, we investigated links between local and landscape-level land-use, health and pollination services in common pollinators, the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, by measuring various traits as proxies for pollinator health and pollination services. Because of their different life histories, we expected the territorial bumblebees to be more vulnerable to land-use intensification at both spatial levels, compared with the migratory syrphid flies. Both land-use and environmental factors (climate) across spatial scales affected pollinator health, mostly via changes in body size: High land-use intensity reduced bumblebee body size, whereas higher ambient air temperature decreased syrphid fly body size. Increasing proportions of intensively managed areas at the landscape level decreased viral infections in both species. Additionally, landscape-level land-use and climate changed the bumblebees cuticular chemical profile, which is essential for communication in these social insects. Increasing land-use intensity at the local level and higher proportions of intensive land-use at the landscape level both had an indirect negative effect on pollination services in bumblebees via local flower cover and body size. Pollination services in both species were linked to body size. Thus, land-use factors affect pollinator health differently: bumblebees are more vulnerable to local and landscape-level land-use intensification, while syrphid flies are more resilient potentially due to their higher mobility. As pollinator health affects pollination services, our results indicate that land-use intensification poses a high risk to crops pollinated by species with small home ranges.
Collapse
Affiliation(s)
- Florian Straub
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andrea Larissa Boesing
- Senckenberg Biodiversität und Klima Forschungszentrum, Georg-Voigt-Straße 14-16, 60325 Frankfurt am Main, Germany
| | - Peter Manning
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ola Olsson
- Lund University, Department of Biology, Ecology Building, 22362 Lund, Sweden
| | - Jonas Kuppler
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
2
|
Gekière A, Breuer L, Dorio L, Evrard D, Vanderplanck M, Michez D. Bumble bees do not avoid field-realistic but innocuous concentrations of cadmium and copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1123-1134. [PMID: 39261366 DOI: 10.1007/s10646-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bee populations are facing numerous stressors globally, including environmental pollution by trace metals and metalloids. Understanding whether bees can detect and avoid these pollutants in their food is pivotal, as avoidance abilities may mitigate their exposure to xenobiotics. While these pollutants are known to induce sublethal effects in bees, such as disrupting physiological mechanisms, their potential impacts on locomotive abilities, fat metabolism, and reproductive physiology remain poorly understood. In this study, utilising workers of the buff-tailed bumble bee and two prevalent trace metals, namely cadmium and copper, we aimed to address these knowledge gaps for field-realistic concentrations. Our findings reveal that workers did not reject field-realistic concentrations of cadmium and copper in sucrose solutions. Moreover, they did not reject lethal concentrations of cadmium, although they rejected lethal concentrations of copper. Additionally, we observed no significant effects of field-realistic concentrations of these metals on the walking and flying activities of workers, nor on their fat metabolism and reproductive physiology. Overall, our results suggest that bumble bees may not avoid cadmium and copper at environmental concentrations, but ingestion of these metals in natural settings may not adversely affect locomotive abilities, fat metabolism, or reproductive physiology. However, given the conservative nature of our study, we still recommend future research to employ higher concentrations over longer durations to mimic conditions in heavily polluted areas (i.e., mine surrounding). Furthermore, investigations should ascertain whether field-realistic concentrations of metals exert no impact on bee larvae.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Dimitri Evrard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 1919 Route de Mende, 34293, Montpellier, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
3
|
Krüger J, Buchholz S, Schmitt S, Blankenhaus K, Pernat N, Ott D, Hollens‐Kuhr H. You are what you eat - The influence of polyphagic and monophagic diet on the flight performance of bees. Ecol Evol 2024; 14:e70256. [PMID: 39224153 PMCID: PMC11368496 DOI: 10.1002/ece3.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Movement performance of insects is an important measure of physiological fitness and is likely affected by novel stressors associated with global change. Reduced fitness can lead to smaller foraging areas and thus to decreasing abundance, diversity and nutritional quality, which could weaken insect populations and contribute to global insect decline. Here, we combined two different methods: An experimental semi-field design applying treatments in outdoor flight cages and a follow-up experiment conducted in the laboratory, in which different parameters of movement performance, such as (a) velocity, (b) duration and (c) distance of an insect's flight can be quantified. We kept colonies of the bumblebee Bombus terrestris under contrasting nutritional conditions and measured treatment effects on the movement performance of individuals. Monophagously fed bumblebees showed reduced movement performance than polyphagously fed bumblebees. In particular, they stopped more frequently during flight, flew shorter distances and showed less often flight duration of 20 min. Our results suggest that nutritional deficiency due to a monophagic diet leads to reduced flight performance, which can have dramatic negative consequences for bees. Reduced flight performance may result in decreased availability of host plants, which may negatively affect stress resistance of bees and brood provisioning, facilitating extinction of insects. Although food of great nutritional value is an important compensator for the negative effects of different novel stressor, such as pesticides, it is not much known how to compensate for the effects of nutritional stress, especially in landscapes dominated by monocultures. However, our experimental approach with semi-field and laboratory components has high potential for further studies investigating the impact of different stressors on the physiological fitness of insects but also body mass, or reproductive success and to find factors that may mitigate or even overcome the negative effect of stressors on insects.
Collapse
Affiliation(s)
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - Sophie Schmitt
- Institute of Landscape Ecology, University of MünsterMünsterGermany
| | | | - Nadja Pernat
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| | - David Ott
- Centre for Biodiversity Monitoring and Conservation ScienceLeibniz Institute for the Analysis of Biodiversity ChangeBonnGermany
| | - Hilke Hollens‐Kuhr
- Institute of Landscape Ecology, University of MünsterMünsterGermany
- Centre for Integrative Biodiversity Research and Applied EcologyUniversity of MünsterMünsterGermany
| |
Collapse
|
4
|
Kárpáti Z, Szelényi MO, Tóth Z. Exposure to an insecticide formulation alters chemosensory orientation, but not floral scent detection, in buff-tailed bumblebees (Bombus terrestris). Sci Rep 2024; 14:14622. [PMID: 38918480 PMCID: PMC11199514 DOI: 10.1038/s41598-024-65388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.
Collapse
Affiliation(s)
- Zsolt Kárpáti
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Magdolna Olívia Szelényi
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- National Laboratory for Health Security, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Tóth
- Department of Zoology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| |
Collapse
|
5
|
Weinhold A, Grüner E, Keller A. Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments. Front Cell Infect Microbiol 2024; 14:1342781. [PMID: 38500505 PMCID: PMC10945022 DOI: 10.3389/fcimb.2024.1342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Question The large earth bumble bee (Bombus terrestris) maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems. Still, it is not fully clear whether access to different flower diversities will have a significant influence on the bumble bee microbiota. Here, we tested in a semi-field experiment if the bumble bee microbiota changes over time when exposed to different flower diversities within outdoor flight cages. We used commercial hives to distinguish between vertically and horizontally transmitted bacteria, respectively from the nest environment or the exposed outside environment. Result The sequential sampling of foraging workers over a period of 35 days indicated a temporal progression of the bumble bee microbiota when placed outside. The microbiota increased in diversity and changed in composition and variability over time. We observed a major increase in relative abundance of the families Lactobacillaceae, Bifidobacteriaceae and Weeksellaceae. In contrast, major core-taxa like Snodgrassella and Gilliamella declined in their relative abundance over time. The genus Lactobacillus showed a high diversity and strain specific turnover, so that only specific ASVs showed an increase over time, while others had a more erratic occurrence pattern. Exposure to different flower diversities had no significant influence on the progression of the bumble bee microbiota. Conclusion The bumble bee microbiota showed a dynamic temporal succession with distinct compositional changes and diversification over time when placed outdoor. The exposure of bumble bees to environmental conditions, or environmental microbes, increases dissimilarity and changes the gut-community composition. This shows the importance of environmental influences on the temporal dynamic and progression of the bumble bee microbiota.
Collapse
Affiliation(s)
- Arne Weinhold
- Cellular and Organismic Networks, Faculty of Biology, Center for Organismic Adaptation, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
6
|
Birkenbach M, Straub F, Kiesel A, Ayasse M, Wilfert L, Kuppler J. Land-use affects pollinator-specific resource availability and pollinator foraging behaviour. Ecol Evol 2024; 14:e11061. [PMID: 38455145 PMCID: PMC10918743 DOI: 10.1002/ece3.11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Land-use management is a key factor causing pollinator declines in agricultural grasslands. This decline can not only be directly driven by land-use (e.g., habitat loss) but also be indirectly mediated through a reduction in floral resource abundance and diversity, which might in turn affect pollinator health and foraging. We conducted surveys of the abundance of flowering plant species and behavioural observations of two common generalist pollinator species, namely the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, in managed grasslands of variable land-use intensity (LUI) to investigate whether land-use affects (1) resource availability of the pollinators, (2) their host plant selection and (3) pollinator foraging behaviour. We have found that the floral composition of plant species that were used as resource by the investigated pollinator species depends on land-use intensity and practices such as mowing or grazing. We have also found that bumblebees, but not syrphid flies, visit different plants depending on LUI or management type. Furthermore, LUI indirectly changed pollinator behaviour via a reduction in plot-level flower diversity and abundance. For example, bumblebees show longer flight durations with decreasing flower cover indicating higher energy expenditure when foraging on land-use intensive plots. Syrphid flies were generally less affected by local land use, showing how different pollinator groups can differently react to land-use change. Overall, we show that land-use can change resource composition, abundance and diversity for pollinators, which can in turn affect pollinator foraging behaviour and potentially contribute to pollinator decline in agricultural grasslands.
Collapse
Affiliation(s)
- Markus Birkenbach
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Florian Straub
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Anna Kiesel
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| |
Collapse
|