1
|
Al-Omairi HR, Fudickar S, Hein A, Rieger JW. Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement. SENSORS (BASEL, SWITZERLAND) 2023; 23:3979. [PMID: 37112320 PMCID: PMC10146128 DOI: 10.3390/s23083979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an optical non-invasive neuroimaging technique that allows participants to move relatively freely. However, head movements frequently cause optode movements relative to the head, leading to motion artifacts (MA) in the measured signal. Here, we propose an improved algorithmic approach for MA correction that combines wavelet and correlation-based signal improvement (WCBSI). We compare its MA correction accuracy to multiple established correction approaches (spline interpolation, spline-Savitzky-Golay filter, principal component analysis, targeted principal component analysis, robust locally weighted regression smoothing filter, wavelet filter, and correlation-based signal improvement) on real data. Therefore, we measured brain activity in 20 participants performing a hand-tapping task and simultaneously moving their head to produce MAs at different levels of severity. In order to obtain a "ground truth" brain activation, we added a condition in which only the tapping task was performed. We compared the MA correction performance among the algorithms on four predefined metrics (R, RMSE, MAPE, and ΔAUC) and ranked the performances. The suggested WCBSI algorithm was the only one exceeding average performance (p < 0.001), and it had the highest probability to be the best ranked algorithm (78.8% probability). Together, our results indicate that among all algorithms tested, our suggested WCBSI approach performed consistently favorably across all measures.
Collapse
Affiliation(s)
- Hayder R. Al-Omairi
- Applied Neurocognitive Psychology Lab, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Germany
- Department of Biomedical Engineering, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Sebastian Fudickar
- Assistance Systems and Medical Device Technology, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany; (S.F.); (A.H.)
- Institute for Medical Informatics, University of Lübeck, D-23538 Lübeck, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany; (S.F.); (A.H.)
| | - Jochem W. Rieger
- Applied Neurocognitive Psychology Lab, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Germany
| |
Collapse
|
2
|
Heiberg AV, Simonsen SA, Schytz HW, Iversen HK. Cortical hemodynamic response during cognitive Stroop test in acute stroke patients assessed by fNIRS. NeuroRehabilitation 2023; 52:199-217. [PMID: 36641686 DOI: 10.3233/nre-220171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Following acute ischemic stroke (AIS) many patients experience cognitive impairment which interferes neurorehabilitation. Understanding and monitoring pathophysiologic processes behind cognitive symptoms requires accessible methods during testing and training. Functional near-infrared spectroscopy (fNIRS) can assess activational hemodynamic responses in the prefrontal cortex (PFC) and feasibly be used as a biomarker to support stroke rehabilitation. OBJECTIVE Exploring the feasibility of fNIRS as a biomarker during the Stroop Color and Word Test (SCWT) assessing executive function in AIS patients. METHODS Observational study of 21 patients with mild to moderate AIS and 22 healthy age- and sex-matched controls (HC) examined with fNIRS of PFC during the SCWT. Hemodynamic responses were analyzed with general linear modeling. RESULTS The SCWT was performed worse by AIS patients than HC. Neither patients nor HC showed PFC activation, but an inverse activational pattern primarily in superolateral and superomedial PFC significantly lower in AIS. Hemodynamic responses were incoherent to test difficulty and performance. No other group differences or lateralization were found. CONCLUSIONS AIS patients had impaired executive function assessed by the SCWT, while both groups showed an inverse hemodynamic response significantly larger in HC. Investigations assessing the physiology behind inverse hemodynamic responses are warranted before deeming clinical implementation reasonable.
Collapse
Affiliation(s)
- Adam Vittrup Heiberg
- Clinical Stroke Research Unit, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.,Faculty of Health and MedicalSciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Amalie Simonsen
- Clinical Stroke Research Unit, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Henrik Winther Schytz
- Faculty of Health and MedicalSciences, University of Copenhagen, Copenhagen, Denmark.,Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle Klingenberg Iversen
- Clinical Stroke Research Unit, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.,Faculty of Health and MedicalSciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. Int J Mol Sci 2022; 23:ijms231810318. [PMID: 36142225 PMCID: PMC9499323 DOI: 10.3390/ijms231810318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
Collapse
|
4
|
Evaluation of fNIRS signal components elicited by cognitive and hypercapnic stimuli. Sci Rep 2021; 11:23457. [PMID: 34873185 PMCID: PMC8648757 DOI: 10.1038/s41598-021-02076-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) measurements are confounded by signal components originating from multiple physiological causes, whose activities may vary temporally and spatially (across tissue layers, and regions of the cortex). Furthermore, the stimuli can induce evoked effects, which may lead to over or underestimation of the actual effect of interest. Here, we conducted a temporal, spectral, and spatial analysis of fNIRS signals collected during cognitive and hypercapnic stimuli to characterize effects of functional versus systemic responses. We utilized wavelet analysis to discriminate physiological causes and employed long and short source-detector separation (SDS) channels to differentiate tissue layers. Multi-channel measures were analyzed further to distinguish hemispheric differences. The results highlight cardiac, respiratory, myogenic, and very low frequency (VLF) activities within fNIRS signals. Regardless of stimuli, activity within the VLF band had the largest contribution to the overall signal. The systemic activities dominated the measurements from the short SDS channels during cognitive stimulus, but not hypercapnic stimulus. Importantly, results indicate that characteristics of fNIRS signals vary with type of the stimuli administered as cognitive stimulus elicited variable responses between hemispheres in VLF band and task-evoked temporal effect in VLF, myogenic and respiratory bands, while hypercapnic stimulus induced a global response across both hemispheres.
Collapse
|
5
|
Gilmore N, Yücel MA, Li X, Boas DA, Kiran S. Investigating Language and Domain-General Processing in Neurotypicals and Individuals With Aphasia - A Functional Near-Infrared Spectroscopy Pilot Study. Front Hum Neurosci 2021; 15:728151. [PMID: 34602997 PMCID: PMC8484538 DOI: 10.3389/fnhum.2021.728151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Brain reorganization patterns associated with language recovery after stroke have long been debated. Studying mechanisms of spontaneous and treatment-induced language recovery in post-stroke aphasia requires a network-based approach given the potential for recruitment of perilesional left hemisphere language regions, homologous right hemisphere language regions, and/or spared bilateral domain-general regions. Recent hardware, software, and methodological advances in functional near-infrared spectroscopy (fNIRS) make it well-suited to examine this question. fNIRS is cost-effective with minimal contraindications, making it a robust option to monitor treatment-related brain activation changes over time. Establishing clear activation patterns in neurotypical adults during language and domain-general cognitive processes via fNIRS is an important first step. Some fNIRS studies have investigated key language processes in healthy adults, yet findings are challenging to interpret in the context of methodological limitations. This pilot study used fNIRS to capture brain activation during language and domain-general processing in neurotypicals and individuals with aphasia. These findings will serve as a reference when interpreting treatment-related changes in brain activation patterns in post-stroke aphasia in the future. Twenty-four young healthy controls, seventeen older healthy controls, and six individuals with left hemisphere stroke-induced aphasia completed two language tasks (i.e., semantic feature, picture naming) and one domain-general cognitive task (i.e., arithmetic) twice during fNIRS. The probe covered bilateral frontal, parietal, and temporal lobes and included short-separation detectors for scalp signal nuisance regression. Younger and older healthy controls activated core language regions during semantic feature processing (e.g., left inferior frontal gyrus pars opercularis) and lexical retrieval (e.g., left inferior frontal gyrus pars triangularis) and domain-general regions (e.g., bilateral middle frontal gyri) during hard versus easy arithmetic as expected. Consistent with theories of post-stroke language recovery, individuals with aphasia activated areas outside the traditional networks: left superior frontal gyrus and left supramarginal gyrus during semantic feature judgment; left superior frontal gyrus and right precentral gyrus during picture naming; and left inferior frontal gyrus pars opercularis during arithmetic processing. The preliminary findings in the stroke group highlight the utility of using fNIRS to study language and domain-general processing in aphasia.
Collapse
Affiliation(s)
- Natalie Gilmore
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Meryem Ayse Yücel
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Xinge Li
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - David A Boas
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Swathi Kiran
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Rahman MA, Siddik AB, Ghosh TK, Khanam F, Ahmad M. A Narrative Review on Clinical Applications of fNIRS. J Digit Imaging 2020; 33:1167-1184. [PMID: 32989620 PMCID: PMC7573058 DOI: 10.1007/s10278-020-00387-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a relatively new imaging modality in the functional neuroimaging research arena. The fNIRS modality non-invasively investigates the change of blood oxygenation level in the human brain utilizing the transillumination technique. In the last two decades, the interest in this modality is gradually evolving for its real-time monitoring, relatively low-cost, radiation-less environment, portability, patient-friendliness, etc. Including brain-computer interface and functional neuroimaging research, this technique has some important application of clinical perspectives such as Alzheimer's disease, schizophrenia, dyslexia, Parkinson's disease, childhood disorders, post-neurosurgery dysfunction, attention, functional connectivity, and many more can be diagnosed as well as in some form of assistive modality in clinical approaches. Regarding the issue, this review article presents the current scopes of fNIRS in medical assistance, clinical decision making, and future perspectives. This article also covers a short history of fNIRS, fundamental theories, and significant outcomes reported by a number of scholarly articles. Since this review article is hopefully the first one that comprehensively explores the potential scopes of the fNIRS in a clinical perspective, we hope it will be helpful for the researchers, physicians, practitioners, current students of the functional neuroimaging field, and the related personnel for their further studies and applications.
Collapse
Affiliation(s)
- Md. Asadur Rahman
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216 Bangladesh
| | - Abu Bakar Siddik
- Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| | - Tarun Kanti Ghosh
- Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| | - Farzana Khanam
- Department of Biomedical Engineering, Jashore University of Science and Technology (JUST), Jashore, 7408 Bangladesh
| | - Mohiuddin Ahmad
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203 Bangladesh
| |
Collapse
|
7
|
Kato J, Yamada T, Kawaguchi H, Matsuda K, Higo N. Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity. Sci Rep 2020; 10:6458. [PMID: 32296087 PMCID: PMC7160113 DOI: 10.1038/s41598-020-63617-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.
Collapse
Affiliation(s)
- Junpei Kato
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yamada
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hiroshi Kawaguchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Keiji Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
8
|
Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081612] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is an optical technique that can measure brain tissue oxygenation and haemodynamics in real-time and at the patient bedside allowing medical doctors to access important physiological information. However, despite this, the use of NIRS in a clinical environment is hindered due to limitations, such as poor reproducibility, lack of depth sensitivity and poor brain-specificity. Time domain NIRS (or TD-NIRS) can resolve these issues and offer detailed information of the optical properties of the tissue, allowing better physiological information to be retrieved. This is achieved at the cost of increased instrument complexity, operation complexity and price. In this review, we focus on brain monitoring clinical applications of TD-NIRS. A total of 52 publications were identified, spanning the fields of neonatal imaging, stroke assessment, traumatic brain injury (TBI) assessment, brain death assessment, psychiatry, peroperative care, neuronal disorders assessment and communication with patient with locked-in syndrome. In all the publications, the advantages of the TD-NIRS measurement to (1) extract absolute values of haemoglobin concentration and tissue oxygen saturation, (2) assess the reduced scattering coefficient, and (3) separate between extra-cerebral and cerebral tissues, are highlighted; and emphasize the utility of TD-NIRS in a clinical context. In the last sections of this review, we explore the recent developments of TD-NIRS, in terms of instrumentation and methodologies that might impact and broaden its use in the hospital.
Collapse
|
9
|
Muthalib M, Ferrari M, Quaresima V, Kerr G, Perrey S. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement. Clin Physiol Funct Imaging 2017; 38:816-822. [PMID: 29110426 DOI: 10.1111/cpf.12485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022]
Abstract
This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. METHODS In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. RESULTS NMES-evoked movements induced significantly greater activation (increase in O2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O2 Hb (P = 0·144) and HHb (P = 0·958). CONCLUSION fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements.
Collapse
Affiliation(s)
- Makii Muthalib
- EuroMov, Univ. Montpellier, Montpellier, France.,SilverLine Research Services, Brisbane, QLD, Australia.,Movement Neuroscience, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marco Ferrari
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Graham Kerr
- Movement Neuroscience, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | |
Collapse
|
10
|
Wriessnegger SC, Kirchmeyr D, Bauernfeind G, Müller-Putz GR. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Brain Cogn 2017; 117:108-116. [PMID: 28673464 DOI: 10.1016/j.bandc.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria.
| | - Daniela Kirchmeyr
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| | - Günther Bauernfeind
- Department of Otolaryngology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| |
Collapse
|
11
|
Gramigna V, Pellegrino G, Cerasa A, Cutini S, Vasta R, Olivadese G, Martino I, Quattrone A. Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin? Neurorehabil Neural Repair 2017; 31:402-412. [PMID: 28196453 DOI: 10.1177/1545968317693304] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Walking is a complex motor behavior with a special relevance in clinical neurology. Many neurological diseases, such as Parkinson's disease and stroke, are characterized by gait disorders whose neurofunctional correlates are poorly investigated. Indeed, the analysis of real walking with the standard neuroimaging techniques poses strong challenges, and only a few studies on motor imagery or walking observation have been performed so far. Functional near-infrared spectroscopy (fNIRS) is becoming an important research tool to assess functional activity in neurological populations or for special tasks, such as walking, because it allows investigating brain hemodynamic activity in an ecological setting, without strong immobility constraints. A systematic review following PRISMA guidelines was conducted on the fNIRS-based examination of gait disorders. Twelve of the initial yield of 489 articles have been included in this review. The lesson learnt from these studies suggest that oxy-hemoglobin levels within the prefrontal and premotor cortices are more sensitive to compensation strategies reflecting postural control and restoration of gait disorders. Although this field of study is in its relative infancy, the evidence provided encourages the translation of fNIRS in clinical practice, as it offers a unique opportunity to explore in depth the activity of the cortical motor system during real walking in neurological patients. We also discuss to what extent fNIRS may be applied for assessing the effectiveness of rehabilitation programs.
Collapse
Affiliation(s)
| | | | - Antonio Cerasa
- 1 University Magna Graecia, Catanzaro, Italy.,3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| | - Simone Cutini
- 4 Department of Developmental Psychology, University of Padova, Padova, Italy
| | | | - Giuseppe Olivadese
- 3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| | | | - Aldo Quattrone
- 1 University Magna Graecia, Catanzaro, Italy.,3 Istituto di Bioimmagini e Fisiologia Molecolare, National Research Council, Catanzaro, Italy
| |
Collapse
|
12
|
Verdecchia K, Diop M, Lee A, Morrison LB, Lee TY, St. Lawrence K. Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. BIOMEDICAL OPTICS EXPRESS 2016; 7:3659-3674. [PMID: 27699127 PMCID: PMC5030039 DOI: 10.1364/boe.7.003659] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 05/21/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a promising technique for brain monitoring as it can provide a continuous signal that is directly related to cerebral blood flow (CBF); however, signal contamination from extracerebral tissue can cause flow underestimations. The goal of this study was to investigate whether a multi-layered (ML) model that accounts for light propagation through the different tissue layers could successfully separate scalp and brain flow when applied to DCS data acquired at multiple source-detector distances. The method was first validated with phantom experiments. Next, experiments were conducted in a pig model of the adult head with a mean extracerebral tissue thickness of 9.8 ± 0.4 mm. Reductions in CBF were measured by ML DCS and computed tomography perfusion for validation; excellent agreement was observed by a mean difference of 1.2 ± 4.6% (CI95%: -31.1 and 28.6) between the two modalities, which was not significantly different.
Collapse
Affiliation(s)
- Kyle Verdecchia
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Albert Lee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Laura B. Morrison
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ting-Yim Lee
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6G 2V4, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
13
|
Quaresima V, Ferrari M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. ORGANIZATIONAL RESEARCH METHODS 2016. [DOI: 10.1177/1094428116658959] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upon adequate stimulation, real-time maps of cortical hemodynamic responses can be obtained by functional near-infrared spectroscopy (fNIRS), which noninvasively measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. This review is aimed at giving a concise and simple overview of the basic principles of fNIRS including features, strengths, advantages, limitations, and utility for evaluating human behavior. The transportable/wireless commercially available fNIRS systems have a time resolution of 1 to 10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution up to 1 cm. fNIRS has been found suitable for many applications on human beings, either adults or infants/children, in the field of social sciences, neuroimaging basic research, and medicine. Some examples of present and future prospects of fNIRS for assessing cerebral cortex function during human behavior in different situations (in natural and social situations) will be provided. Moreover, the most recent fNIRS studies for investigating interpersonal interactions by adopting the hyperscanning approach, which consists of the measurement of brain activity simultaneously on two or more people, will be reported.
Collapse
Affiliation(s)
- Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L’Aquila, Italy
| |
Collapse
|
14
|
Mihara M, Miyai I. Review of functional near-infrared spectroscopy in neurorehabilitation. NEUROPHOTONICS 2016; 3:031414. [PMID: 27429995 PMCID: PMC4940623 DOI: 10.1117/1.nph.3.3.031414] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/21/2016] [Indexed: 05/23/2023]
Abstract
We provide a brief overview of the research and clinical applications of near-infrared spectroscopy (NIRS) in the neurorehabilitation field. NIRS has several potential advantages and shortcomings as a neuroimaging tool and is suitable for research application in the rehabilitation field. As one of the main applications of NIRS, we discuss its application as a monitoring tool, including investigating the neural mechanism of functional recovery after brain damage and investigating the neural mechanisms for controlling bipedal locomotion and postural balance in humans. In addition to being a monitoring tool, advances in signal processing techniques allow us to use NIRS as a therapeutic tool in this field. With a brief summary of recent studies investigating the clinical application of NIRS using motor imagery task, we discuss the possible clinical usage of NIRS in brain-computer interface and neurofeedback.
Collapse
Affiliation(s)
- Masahito Mihara
- Osaka University, Graduate School of Medicine, Department of Neurology, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Osaka University, Global Center for Medical Engineering and Informatics, Division of Clinical Neuroengineering, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Miyai
- Morinomiya Hospital, Neurorehabilitation Research Institute, 2-1-88 Morinomiya, Jyoto-ku, Osaka, Osaka 536-0025, Japan
| |
Collapse
|
15
|
Baker WB, Parthasarathy AB, Ko TS, Busch DR, Abramson K, Tzeng SY, Mesquita RC, Durduran T, Greenberg JH, Kung DK, Yodh AG. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts. NEUROPHOTONICS 2015; 2:035004. [PMID: 26301255 PMCID: PMC4524732 DOI: 10.1117/1.nph.2.3.035004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.
Collapse
Affiliation(s)
- Wesley B. Baker
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Address all correspondence to: Wesley B. Baker, E-mail:
| | - Ashwin B. Parthasarathy
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tiffany S. Ko
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - David R. Busch
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Children’s Hospital of Philadelphia, Division of Neurology, 3401 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth Abramson
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Shih-Yu Tzeng
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- National Cheng Kung University, Department of Photonics, No. 1, University Road, Tainan City 701, Taiwan
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, 777 R. Sergio Buarque de Holanda, Campinas 13083-859, Brazil
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona) 08860, Spain
| | - Joel H. Greenberg
- University of Pennsylvania, Department of Neurology, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - David K. Kung
- Hospital of the University of Pennsylvania, Department of Neurosurgery, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Pittaccio S, Garavaglia L, Molteni E, Guanziroli E, Zappasodi F, Beretta E, Strazzer S, Molteni F, Villa E, Passaretti F. Can passive mobilization provide clinically-relevant brain stimulation? A pilot EEG and NIRS study on healthy subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3547-50. [PMID: 24110495 DOI: 10.1109/embc.2013.6610308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lower limb rehabilitation is a fundamental part of post-acute care in neurological disease. Early commencement of active workout is often prevented by paresis, thus physical treatment may be delayed until patients regain some voluntary command of their muscles. Passive mobilization of the affected joints is mostly delivered in order to safeguard tissue properties and shun circulatory problems. The present paper investigates the potential role of early passive motion in stimulating cortical areas of the brain devoted to the control of the lower limb. An electro-mechanical mobilizer for the ankle joint (Toe-Up!) was implemented utilizing specially-designed shape-memory-alloy-based actuators. This device was constructed to be usable by bedridden subjects. Besides, the slowness and gentleness of the imparted motion, make it suitable for patients in a very early stage of their recovery. The mobilizer underwent technical checks to confirm reliability and passed the required safety tests for electric biomedical devices. Four healthy volunteers took part in the pre-clinical phase of the study. The protocol consisted in measuring of brain activity by EEG and NIRS in four different conditions: rest, active dorsiflexion of the ankle, passive mobilization of the ankle, and assisted motion of the same joint. The acquired data were processed to obtain maps of cortical activation, which were then compared. The measurements collected so far show that there is a similar pattern of activity between active and passive/assisted particularly in the contralateral premotor areas. This result, albeit based on very few observations, might suggest that passive motion provides somatosensory afferences that are processed in a similar manner as for voluntary control. Should this evidence be confirmed by further trials on healthy individuals and neurological patients, it could form a basis for a clinical use of early passive exercise in supporting central functional recovery.
Collapse
|
17
|
Selb J, Yücel MA, Phillip D, Schytz HW, Iversen HK, Vangel M, Ashina M, Boas DA. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:56011. [PMID: 26018790 PMCID: PMC4445402 DOI: 10.1117/1.jbo.20.5.056011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/04/2015] [Indexed: 05/02/2023]
Abstract
Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real MAs, we find that the best motion correction approach consists of discarding the segments of MAs following a careful approach to minimize the contamination due to band-pass filtering of data from "bad" segments spreading into adjacent "good" segments. Finally, we compare the IHC in a stroke group and in a healthy group that we artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
- Address all correspondence to: Juliette Selb, E-mail:
| | - Meryem A. Yücel
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Dorte Phillip
- University of Copenhagen, Rigshospitalet, Danish Headache Center, Faculty of Health Sciences, Department of Neurology, Copenhagen, Glostrup 2600, Denmark
| | - Henrik W. Schytz
- University of Copenhagen, Rigshospitalet, Danish Headache Center, Faculty of Health Sciences, Department of Neurology, Copenhagen, Glostrup 2600, Denmark
| | - Helle K. Iversen
- University of Copenhagen, Rigshospitalet, Stroke Unit, Faculty of Health Sciences, Department of Neurology, Copenhagen, Glostrup 2600, Denmark
| | - Mark Vangel
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Messoud Ashina
- University of Copenhagen, Rigshospitalet, Danish Headache Center, Faculty of Health Sciences, Department of Neurology, Copenhagen, Glostrup 2600, Denmark
| | - David A. Boas
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
18
|
Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG. Modified Beer-Lambert law for blood flow. BIOMEDICAL OPTICS EXPRESS 2014; 5:4053-75. [PMID: 25426330 PMCID: PMC4242038 DOI: 10.1364/boe.5.004053] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Collapse
Affiliation(s)
- Wesley B. Baker
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | | | - David R. Busch
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
- Div. of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104,
USA
| | - Rickson C. Mesquita
- Institute of Physics, University of Campinas, Campinas, SP 13083-859,
Brazil
| | - Joel H. Greenberg
- Dept. Neurology, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | - A. G. Yodh
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| |
Collapse
|
19
|
Toczylowska B, Zieminska E, Goch G, Milej D, Gerega A, Liebert A. Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study. BIOMEDICAL OPTICS EXPRESS 2014; 5:800-16. [PMID: 24688815 PMCID: PMC3959834 DOI: 10.1364/boe.5.000800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 05/05/2023]
Abstract
The aim of this study was to examine neurotoxicity indocyanine green (ICG). We assessed viability of primary cerebellar granule cell culture (CGC) exposed to ICG to test two mechanisms that could be the first triggers causing neuronal toxicity: imbalance in calcium homeostasis and the degree of oligomerization of ICG molecules. We have observed this imbalance in CGC after exposure to 75-125μΜ ICG and dose and application sequence dependent protective effect of Gadovist on surviving neurons in vitro when used with ICG. Spectroscopic studies suggest the major cause of toxicity of the ICG is connected with oligomers formation. ICG at concentration of 25 μM (which is about 4 times higher than the highest concentration of ICG in the brain applied in in-vivo human studies) is not neurotoxic in the cell culture.
Collapse
Affiliation(s)
- Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Str. 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Str., 02-106 Warsaw, Poland
| | - Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Grazyna Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Str., 02-106 Warsaw, Poland
| | - Daniel Milej
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Str. 02-109 Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Str. 02-109 Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Str. 02-109 Warsaw, Poland
| |
Collapse
|
20
|
Mesquita RC, Schenkel SS, Minkoff DL, Lu X, Favilla CG, Vora PM, Busch DR, Chandra M, Greenberg JH, Detre JA, Yodh AG. Influence of probe pressure on the diffuse correlation spectroscopy blood flow signal: extra-cerebral contributions. BIOMEDICAL OPTICS EXPRESS 2013; 4:978-94. [PMID: 23847725 PMCID: PMC3704102 DOI: 10.1364/boe.4.000978] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/03/2023]
Abstract
A pilot study explores relative contributions of extra-cerebral (scalp/skull) versus brain (cerebral) tissues to the blood flow index determined by diffuse correlation spectroscopy (DCS). Microvascular DCS flow measurements were made on the head during baseline and breath-holding/hyperventilation tasks, both with and without pressure. Baseline (resting) data enabled estimation of extra-cerebral flow signals and their pressure dependencies. A simple two-component model was used to derive baseline and activated cerebral blood flow (CBF) signals, and the DCS flow indices were also cross-correlated with concurrent Transcranial Doppler Ultrasound (TCD) blood velocity measurements. The study suggests new pressure-dependent experimental paradigms for elucidation of blood flow contributions from extra-cerebral and cerebral tissues.
Collapse
Affiliation(s)
- Rickson C. Mesquita
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
- Institute of Physics, University of Campinas, 777 Sergio Buarque de Holanda St., Campinas, SP 13083-859, Brazil
| | - Steven S. Schenkel
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - David L. Minkoff
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - Xiangping Lu
- Department of Neurology, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - Christopher G. Favilla
- Department of Neurology, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - Patrick M. Vora
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - David R. Busch
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Neurology, Children’s Hospital of Philadelphia, 34th St. & Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Malavika Chandra
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| | - Joel H. Greenberg
- Department of Neurology, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - A. G. Yodh
- Department of Physics & Astronomy, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, Gagnon L, Boas DA, Cooper RJ. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 2013; 85 Pt 1:181-91. [PMID: 23639260 DOI: 10.1016/j.neuroimage.2013.04.082] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022] Open
Abstract
Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment.
Collapse
Affiliation(s)
- Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Obrig H. NIRS in clinical neurology - a 'promising' tool? Neuroimage 2013; 85 Pt 1:535-46. [PMID: 23558099 DOI: 10.1016/j.neuroimage.2013.03.045] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) has become a relevant research tool in neuroscience. In special populations such as infants and for special tasks such as walking, NIRS has asserted itself as a low resolution functional imaging technique which profits from its ease of application, portability and the option to co-register other neurophysiological and behavioral data in a 'near natural' environment. For clinical use in neurology this translates into the option to provide a bed-side oximeter for the brain, broadly available at comparatively low costs. However, while some potential for routine brain monitoring during cardiac and vascular surgery and in neonatology has been established, NIRS is largely unknown to clinical neurologists. The article discusses some of the reasons for this lack of use in clinical neurology. Research using NIRS in three major neurologic diseases (cerebrovascular disease, epilepsy and headache) is reviewed. Additionally the potential to exploit the established position of NIRS as a functional imaging tool with regard to clinical questions such as preoperative functional assessment and neurorehabilitation is discussed.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany; Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Dept. Neurology, Charité, University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
23
|
Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 2012; 115:1373-83. [PMID: 23144435 DOI: 10.1213/ane.0b013e31826dd6a6] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Near-infrared spectroscopy (NIRS) has potential as a noninvasive brain monitor across a spectrum of disorders. In the last decade, there has been a rapid expansion of clinical experience using NIRS to monitor cerebral oxygenation, and there is some evidence that NIRS-guided brain protection protocols might lead to a reduction in perioperative neurologic complications after cardiac surgery. However, there are no data to support the wider application of NIRS during routine surgery under general anesthesia, and its application in brain injury, where it might be expected to have a key monitoring role, is undefined. Although increasingly sophisticated apparatuses, including broadband and time-resolved spectroscopy systems, provide insights into the potential of NIRS to measure regional cerebral oxygenation, hemodynamics, and metabolism in real-time, these innovations have yet to translate into effective monitor-guided brain protection treatment strategies. NIRS has many potential advantages over other neuromonitoring techniques, but further investigation and technological advances are necessary before it can be introduced more widely into clinical practice.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Neurocritical Care, Box 30, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BGUK
| | | | | |
Collapse
|
24
|
Comparison of neural correlates of risk decision making between genders: An exploratory fNIRS study of the Balloon Analogue Risk Task (BART). Neuroimage 2012; 62:1896-911. [DOI: 10.1016/j.neuroimage.2012.05.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
|
25
|
Elwell CE, Cooper CE. Making light work: illuminating the future of biomedical optics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4358-79. [PMID: 22006895 DOI: 10.1098/rsta.2011.0302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In 1996, the Royal Society held a Discussion Meeting entitled 'Near-infrared spectroscopy and imaging of living systems'. In 2010, this topic was revisited in a Theo Murphy Royal Society Scientific Discussion Meeting entitled 'Making light work: illuminating the future of biomedical optics'. The second meeting provided the opportunity for leading researchers to reflect on how the technology, methods and applications have evolved over the past 14 years and assess where they have made a major impact. Particular emphasis was placed on discussions of future prospects and associated challenges. This Introduction provides an overview of the state of the art of near-infrared spectroscopy (NIRS) and biomedical optics, with specific reference to the contributed papers from the invited speakers included in this issue. Importantly, we also reflect on the contributions from all of the attendees by highlighting the issues raised during oral presentations, facilitated panel sessions and discussions, and use these to summarize the current opinion on the development and application of optical systems for use in the clinical and life sciences. A notable outcome from the meeting was a plan to establish a biennial international conference for developers and users of NIRS technologies.
Collapse
Affiliation(s)
- Clare E Elwell
- Near Infrared Spectroscopy Research Group, Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|