1
|
Papageorgiou L, Papakonstantinou E, Salis C, Polychronidou E, Hagidimitriou M, Maroulis D, Eliopoulos E, Vlachakis D. Drugena: A Fully Automated Immunoinformatics Platform for the Design of Antibody-Drug Conjugates Against Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1194:203-215. [PMID: 32468536 DOI: 10.1007/978-3-030-32622-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibodies are proteins that are the first line of defense in the adaptive immune response of vertebrates. Thereby, they are involved in a multitude of biochemical mechanisms and clinical manifestations with significant medical interest, such as autoimmunity, the regulation of infection, and cancer. An emerging field in antibody science that is of huge medicinal interest is the development of novel antibody-interacting drugs. Such entities are the antibody-drug conjugates (ADCs), which are a new type of targeted therapy, which consist of an antibody linked to a payload drug. Overall, the underlying principle of ADCs is the discerning delivery of a drug to a target, hoping to increase the potency of the original drug. Drugena suite is a pioneering platform that employs state-of-the-art computational biology methods in the fight against neurodegenerative diseases using ADCs. Drugena encompasses an up-to-date structural database of specialized antibodies for neurological disorders and the NCI database with over 96 million entities for the in silico development of ADCs. The pipeline of the Drugena suite has been divided into several steps and modules that are closely related with a synergistic fashion under a user-friendly graphical user interface.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Constantinos Salis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Marianna Hagidimitriou
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitris Maroulis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Eliopoulos
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Genetics and Computational Biology Group, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece. .,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
2
|
Olive Oil Polyphenols in Neurodegenerative Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:77-91. [PMID: 32468462 DOI: 10.1007/978-3-030-32633-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases lead to the death of nerve cells in the brain or the spinal cord. A wide range of diseases are included within the group of neurodegenerative disorders, with the most common ones being dementia, Alzheimer's, and Parkinson's diseases. Millions of older people are suffering from such pathologies. The global increase of life expectancy unavoidably leads to a consequent increase in the number of people who will be at some degree affected by neurodegenerative-related diseases. At this moment, there is no effective therapy or treatment that can reverse the loss of neurons. A growing number of studies highlight the value of the consumption of medical foods, and in particular olive oil, as one of the most important components of the Mediterranean diet. A diet based on extra virgin olive oil seems to contribute toward the lowering of risk of age-related pathologies due to high phenol concentration. The link of a polyphenol found in extra virgin olive oil, namely, tyrosol, with the protein tyrosinase, associated to Parkinson's disease is underlined as a paradigm of affiliation between polyphenols and neurodegenerative disorders.
Collapse
|
3
|
Kashyap H, Ahmed HA, Hoque N, Roy S, Bhattacharyya DK. Big data analytics in bioinformatics: architectures, techniques, tools and issues. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0135-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Brown AS, Patel CJ. aRrayLasso: a network-based approach to microarray interconversion. Bioinformatics 2015; 31:3859-61. [PMID: 26283699 PMCID: PMC4653393 DOI: 10.1093/bioinformatics/btv469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
Summary: Robust conversion between microarray platforms is needed to leverage the wide variety of microarray expression studies that have been conducted to date. Currently available conversion methods rely on manufacturer annotations, which are often incomplete, or on direct alignment of probes from different platforms, which often fail to yield acceptable genewise correlation. Here, we describe aRrayLasso, which uses the Lasso-penalized generalized linear model to model the relationships between individual probes in different probe sets. We have implemented aRrayLasso in a set of five open-source R functions that allow the user to acquire data from public sources such as Gene Expression Omnibus, train a set of Lasso models on that data and directly map one microarray platform to another. aRrayLasso significantly predicts expression levels with similar fidelity to technical replicates of the same RNA pool, demonstrating its utility in the integration of datasets from different platforms. Availability and implementation: All functions are available, along with descriptions, at https://github.com/adam-sam-brown/aRrayLasso. Contact:chirag_patel@hms.harvard.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Adam S Brown
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|