1
|
Clavaguéra C, Thaunay F, Ohanessian G. Manifolds of low energy structures for a magic number of hydrated sulfate: SO 42-(H 2O) 24. Phys Chem Chem Phys 2021; 23:24428-24438. [PMID: 34693943 DOI: 10.1039/d1cp03123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low energy structures of SO42-(H2O)24 have been obtained using a combination of classical molecular dynamics simulations and refinement of structures and energies by quantum chemical calculations. Extensive exploration of the potential energy surface led to a number of low-energy structures, confirmed by accurate calibration calculations. An overall analysis of this large set was made after devising appropriate structural descriptors such as the numbers of cycles and their combinations. Low energy structures bear common motifs, the most prominent being fused cycles involving alternatively four and six water molecules. The latter adopt specific conformations which ensure the appropriate surface curvature to form a closed cage without dangling O-H bonds and at the same time provide 12-coordination of the sulfate ion. A prominent feature to take into account is isomerism via inversion of hydrogen bond orientations along cycles. This generates large families of ca. 100 isomers for this cluster size, spanning energy windows of 10-30 kJ mol-1. This relatively ignored isomerism must be taken into account to identify reliably the lowest energy minima. The overall picture is that the magic number cluster SO42-(H2O)24 does not correspond to formation of a single, remarkable structure, but rather to a manifold of structural families with similar stabilities. Extensive calculations on isomerization mechanisms within a family indicate that large barriers are associated to direct inversion of hydrogen bond networks. Possible implications of these results for magic number clusters of other anions are discussed.
Collapse
Affiliation(s)
- Carine Clavaguéra
- Institut de Chimie Physique, Université Paris-Saclay - CNRS, UMR 8000, 91405 Orsay, France.
| | - Florian Thaunay
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| | - Gilles Ohanessian
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| |
Collapse
|
2
|
Jesus WS, Prudente FV, Marques JMC, Pereira FB. Modeling microsolvation clusters with electronic-structure calculations guided by analytical potentials and predictive machine learning techniques. Phys Chem Chem Phys 2021; 23:1738-1749. [PMID: 33427847 DOI: 10.1039/d0cp05200k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We propose a new methodology to study, at the density functional theory (DFT) level, the clusters resulting from the microsolvation of alkali-metal ions with rare-gas atoms. The workflow begins with a global optimization search to generate a pool of low-energy minimum structures for different cluster sizes. This is achieved by employing an analytical potential energy surface (PES) and an evolutionary algorithm (EA). The next main stage of the methodology is devoted to establish an adequate DFT approach to treat the microsolvation system, through a systematic benchmark study involving several combinations of functionals and basis sets, in order to characterize the global minimum structures of the smaller clusters. In the next stage, we apply machine learning (ML) classification algorithms to predict how the low-energy minima of the analytical PES map to the DFT ones. An early and accurate detection of likely DFT local minima is extremely important to guide the choice of the most promising low-energy minima of large clusters to be re-optimized at the DFT level of theory. In this work, the methodology was applied to the Li+Krn (n = 2-14 and 16) microsolvation clusters for which the most competitive DFT approach was found to be the B3LYP-D3/aug-pcseg-1. Additionally, the ML classifier was able to accurately predict most of the solutions to be re-optimized at the DFT level of theory, thereby greatly enhancing the efficiency of the process and allowing its applicability to larger clusters.
Collapse
Affiliation(s)
- W S Jesus
- Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - F V Prudente
- Instituto de Física, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - J M C Marques
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - F B Pereira
- Coimbra Polytechnic - ISEC, Coimbra, Portugal and Centro de Informática e Sistemas da Universidade de Coimbra (CISUC), Coimbra, Portugal.
| |
Collapse
|
3
|
Karimova NV, Chen J, Gord JR, Staudt S, Bertram TH, Nathanson GM, Gerber RB. S N2 Reactions of N 2O 5 with Ions in Water: Microscopic Mechanisms, Intermediates, and Products. J Phys Chem A 2020; 124:711-720. [PMID: 31880456 DOI: 10.1021/acs.jpca.9b09095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactions of dinitrogen pentoxide (N2O5) greatly affect the concentrations of NO3, ozone, OH radicals, methane, and more. In this work, we employ ab initio molecular dynamics and other tools of computational chemistry to explore reactions of N2O5 with anions hydrated by 12 water molecules to shed light on this important class of reactions. The ions investigated are Cl-, SO42-, ClO4-, and RCOO- (R = H, CH3, C2H5). The following main results are obtained: (i) all the reactions take place by an SN2-type mechanism, with a transition state that involves a contact ion pair (NO2+NO3-) that interacts strongly with water molecules. (ii) Reactions of a solvent-separated nitronium ion (NO2+) are not observed in any of the cases. (iii) An explanation is provided for the suppression of ClNO2 formation from N2O5 reacting with salty water when sulfate or acetate ions are present, as found in recent experiments. (iv) Formation of novel intermediate species, such as (SO4NO2-) and RCOONO2, in these reactions is predicted. The results suggest atomistic-level mechanisms for the reactions studied and may be useful for the development of improved modeling of reaction kinetics in aerosol particles.
Collapse
Affiliation(s)
- Natalia V Karimova
- Department of Chemistry , University of California, Irvine , Irvine 92697 , California , United States
| | - James Chen
- Department of Chemistry , University of California, Irvine , Irvine 92697 , California , United States
| | - Joseph R Gord
- Department of Chemistry , University of Wisconsin-Madison , Madison 53706 , Wisconsin , United States
| | - Sean Staudt
- Department of Chemistry , University of Wisconsin-Madison , Madison 53706 , Wisconsin , United States
| | - Timothy H Bertram
- Department of Chemistry , University of Wisconsin-Madison , Madison 53706 , Wisconsin , United States
| | - Gilbert M Nathanson
- Department of Chemistry , University of Wisconsin-Madison , Madison 53706 , Wisconsin , United States
| | - R Benny Gerber
- Department of Chemistry , University of California, Irvine , Irvine 92697 , California , United States.,Institute of Chemistry and Fritz Haber Research Center , Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
4
|
Stace AJ, Clary DC. Modern theoretical chemistry: the legacy of Prof. John N. Murrell. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0460. [PMID: 29431685 PMCID: PMC5805920 DOI: 10.1098/rsta.2017.0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Anthony J Stace
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David C Clary
- Department of Physical and Theoretical Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|