1
|
Bilal A, Butt A, Kazam A, Ali S, Isha, Chang YC. Investigating the Influence of Anthropogenic Activities on Behavioral Changes of an Orb Web Spider ( Neoscona vigilans). INSECTS 2024; 15:609. [PMID: 39194814 DOI: 10.3390/insects15080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Orb web spiders are common and highly diversified animals found in almost all habitats. They have remarkable plasticity against biotic and abiotic factors, making them excellent indicators of environmental health. The web creation behavior of spiders is influenced by disturbances in the environment. The aim of this research was to observe the alteration in the web-building behavior of Neoscona vigilans caused by human activities, specifically traffic disturbances. Spider webs were located and photographed at nighttime along the roadside, and their web characteristics were calculated. Spiders were captured from webs for their body measurements. Spider fourth leg length, carapace width, and body length had a significant association with web size and diameter, CTL, capture area, and mesh size. The quantity of trapped prey, the height of the plant, and the foliage radius increased with the distance from the road. Conversely, anchor points and web elevation from the ground dropped. The highest and lowest proportions of anomalies (modifications/defects) were recorded as holes (52.7%) in 105 webs (100%) and supernumerary (0.7%) in 55 webs (52.4%), respectively. Road disturbance had a negative influence on the spider's behavior as the webs formed in close proximity to the road had a higher frequency of anomalies, with a gradual decrease distantly. We can gain further insight into how different environmental changes, disruptions, and pollutants lead to this imperfection in the otherwise flawless perfect structure of spider webs.
Collapse
Affiliation(s)
- Ahmad Bilal
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Abida Butt
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Adeel Kazam
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Shakir Ali
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Isha
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Young-Cheol Chang
- Course of Chemical and Biological Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan
| |
Collapse
|
2
|
Dwivedi KK, Lakhani P, Yadav A, Kumar S, Kumar N. Location specific multi-scale characterization and constitutive modeling of pig aorta. J Mech Behav Biomed Mater 2023; 142:105809. [PMID: 37116311 DOI: 10.1016/j.jmbbm.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The mechanical and structural behavior of the aorta depend on physiological functions and vary from proximal to distal. Understanding the relation between regionally varying mechanical and multi-scale structural response of aorta can be helpful to assess the disease outcomes. Therefore, this study investigated the variation in mechanical and multi-scale structural properties among the major segments of aorta such as ascending aorta (AA), descending aorta (DA) and abdominal aorta (ABA), and established a relation between mechanical and multi-structural parameters. The obtained results showed significant increase in anisotropy and nonlinearity from proximal to distal aorta. The change in periphery length and radii between load and stress free configuration was also found increasing far from the heart. Opening angle was significantly large for ABA than AA and DA (AA/DA vs ABA; p = 0.001). Mean circumferential residual stretch (ratio of mean periphery length at load and stress free configurations) was found decreasing between AA and DA, and then increasing between DA to ABA and its value was significantly more for ABA (AA vs DA; p = 0.041, AA vs ABA; p = 0.001, DA vs ABA; p = 0.001). The waviness of collagen fibers, collagen fiber content, collagen fibril diameter and total protein content were found significantly increasing from proximal to distal. Pearson correlation test showed a significant linear correlation between variation in mechanical and multi-scale structural parameters over the aortic length. Residual stretch was found positively correlated with collagen fiber content (r = 0.82) whereas opening angel was found positively correlated with total protein content (TPC) (r = 0.76).
Collapse
Affiliation(s)
| | | | - Ashu Yadav
- Department of Automobile Engineering, Manipal University Jaipur, Jaipur, India
| | - Sachin Kumar
- Department of Mechanical Engineering, IIT Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
3
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
4
|
Arguelles J, Baker RH, Perez-Rigueiro J, Guinea GV, Elices M, Hayashi CY. Relating spidroin motif prevalence and periodicity to the mechanical properties of major ampullate spider silks. J Comp Physiol B 2023; 193:25-36. [PMID: 36342510 PMCID: PMC9852138 DOI: 10.1007/s00360-022-01464-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Spider dragline fibers exhibit incredible mechanical properties, outperforming many synthetic polymers in toughness assays, and possess desirable properties for medical and other human applications. These qualities make dragline fibers popular subjects for biomimetics research. The enormous diversity of spiders presents both an opportunity for the development of new bioinspired materials and a challenge for the identification of fundamental design principles, as the mechanical properties of dragline fibers show both intraspecific and interspecific variations. In this regard, the stress-strain curves of draglines from different species have been shown to be effectively compared by the α* parameter, a value derived from maximum-supercontracted silk fibers. To identify potential molecular mechanisms impacting α* values, here we analyze spider fibroin (spidroin) sequences of the Western black widow (Latrodectus hesperus) and the black and yellow garden spider (Argiope aurantia). This study serves as a primer for investigating the molecular properties of spidroins that underlie species-specific α* values. Initial findings are that while overall motif composition was similar between species, certain motifs and higher level periodicities of glycine-rich region lengths showed variation, notably greater distances between poly-A motifs in A. aurantia sequences. In addition to increased period lengths, A. aurantia spidroins tended to have an increased prevalence of charged and hydrophobic residues. These increases may impact the number and strength of hydrogen bond networks within fibers, which have been implicated in conformational changes and formation of nanocrystals, contributing to the greater extensibility of A. aurantia draglines compared to those of L. hesperus.
Collapse
Affiliation(s)
- Joseph Arguelles
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Richard H. Baker
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| | - Jose Perez-Rigueiro
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Engineering (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain ,Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain ,Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, ETSI Caminos, Canales y Peurtos, 28040 Madrid, Spain ,Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - M. Elices
- Centro de Investigatión Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024 USA
| |
Collapse
|
5
|
Prey localization in spider orb webs using modal vibration analysis. Sci Rep 2022; 12:19045. [PMID: 36351940 PMCID: PMC9646800 DOI: 10.1038/s41598-022-22898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Spider webs are finely tuned multifunctional structures, widely studied for their prey capture functionalities such as impact strength and stickiness. However, they are also sophisticated sensing tools that enable the spider to precisely determine the location of impact and capture the prey before it escapes. In this paper, we suggest a new mechanism for this detection process, based on potential modal analysis capabilities of the spider, using its legs as distinct distributed point sensors. To do this, we consider a numerical model of the web structure, including asymmetry in the design, prestress, and geometrical nonlinearity effects. We show how vibration signals deriving from impacts can be decomposed into web eigenmode components, through which the spider can efficiently trace the source location. Based on this numerical analysis, we discuss the role of the web structure, asymmetry, and prestress in the imaging mechanism, confirming the role of the latter in tuning the web response to achieve an efficient prey detection instrument. The results can be relevant for efficient distributed impact sensing applications.
Collapse
|
6
|
Dal Poggetto VF, Bosia F, Greco G, Pugno NM. Prey Impact Localization Enabled by Material and Structural Interaction in Spider Orb Webs. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vinícius F. Dal Poggetto
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | | | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
| | - Nicola M. Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering University of Trento Trento 38123 Italy
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
7
|
Shin D, Cupertino A, de Jong MHJ, Steeneken PG, Bessa MA, Norte RA. Spiderweb Nanomechanical Resonators via Bayesian Optimization: Inspired by Nature and Guided by Machine Learning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106248. [PMID: 34695265 DOI: 10.1002/adma.202106248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
From ultrasensitive detectors of fundamental forces to quantum networks and sensors, mechanical resonators are enabling next-generation technologies to operate in room-temperature environments. Currently, silicon nitride nanoresonators stand as a leading microchip platform in these advances by allowing for mechanical resonators whose motion is remarkably isolated from ambient thermal noise. However, to date, human intuition has remained the driving force behind design processes. Here, inspired by nature and guided by machine learning, a spiderweb nanomechanical resonator is developed that exhibits vibration modes, which are isolated from ambient thermal environments via a novel "torsional soft-clamping" mechanism discovered by the data-driven optimization algorithm. This bioinspired resonator is then fabricated, experimentally confirming a new paradigm in mechanics with quality factors above 1 billion in room-temperature environments. In contrast to other state-of-the-art resonators, this milestone is achieved with a compact design that does not require sub-micrometer lithographic features or complex phononic bandgaps, making it significantly easier and cheaper to manufacture at large scales. These results demonstrate the ability of machine learning to work in tandem with human intuition to augment creative possibilities and uncover new strategies in computing and nanotechnology.
Collapse
Affiliation(s)
- Dongil Shin
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Materials Science and Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Andrea Cupertino
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Matthijs H J de Jong
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
- Faculty of Applied Sciences, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Peter G Steeneken
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
- Faculty of Applied Sciences, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Miguel A Bessa
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Materials Science and Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Richard A Norte
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
- Faculty of Applied Sciences, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628 CD, The Netherlands
| |
Collapse
|
8
|
Lakhani P, Dwivedi KK, Kumar N. Directional dependent variation in mechanical properties of planar anisotropic porcine skin tissue. J Mech Behav Biomed Mater 2020; 104:103693. [PMID: 32174437 DOI: 10.1016/j.jmbbm.2020.103693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/23/2019] [Accepted: 02/09/2020] [Indexed: 11/26/2022]
Abstract
Nonlinear and anisotropic mechanical behavior of skin is essential in various applications such as dermatology, cosmetic products, forensic science, and computational studies. The present study quantifies the mechanical anisotropy of skin using the bulge method and full-field imaging technique. In bulging, the saline solution at 37 °C mimics the in vivo body temperature and fluid conditions, and all experiments were performed in the control environment. Assumption of thin spherical shell membrane theory and imaging techniques were implemented to obtain the anisotropic stress strain relations. Further, stress strain relations at an interval of 10° were calculated to obtain the variation in modulus with direction. Histological examinations were performed to signify the role of the collagen fibers orientation on the mechanical properties. The maximum and minimum linear modulus and collagen fiber orientation intensity were found in good agreement. The angular difference between maximum and minimum linear modulus and orientation intensity was found 71° ± 7° and 76° ± 5° respectively, and the percentage difference was 43.4 ± 8.2 and 52.5 ± 6.4 respectively. Further, a significant difference in the maximum and minimum collagen orientation intensity between the untested and tested specimens indicates the realignment of the fibers. Additionally, a cubic polynomial empirical relation was established to calculate the quantitative variation in the apparent modulus with the directions, which serves for the anisotropic modeling of the skin. The experimental technique used in this study can be applied for anisotropic quantification of planar soft tissues as well as can be utilized to imitate the tissue expansion procedure used in reconstructive surgery.
Collapse
Affiliation(s)
- Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Krashn K Dwivedi
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| |
Collapse
|
9
|
Blamires SJ, Sellers WI. Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider ( Argiope spp.) foraging under Australian climate change scenarios. CONSERVATION PHYSIOLOGY 2019; 7:coz083. [PMID: 31832193 PMCID: PMC6899225 DOI: 10.1093/conphys/coz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 05/11/2023]
Abstract
Phenotypic features extending beyond the body, or EPs, may vary plastically across environments. EP constructs, such as spider webs, vary in property across environments as a result of changes to the physiology of the animal or interactions between the environment and the integrity of the material from which the EP is manufactured. Due to the complexity of the interactions between EP constructs and the environment, the impact of climate change on EP functional integrity is poorly understood. Here we used a dynamic model to assess how temperature and humidity influence spider web major ampullate (MA) silk properties. MA silk is the silk that absorbs the impact of prey striking the web, hence our model provides a useful interpretation of web performance over the temperature (i.e. 20-55°C) and humidity (i.e. 15-100%) ranges assessed. Our results showed that extremely high or low humidity had direct negative effects on web capture performance, with changes in temperature likely having indirect effects. Undeniably, the effect of temperature on web architecture and its interactive effect with humidity on web tension and capture thread stickiness need to be factored into any further predictions of plausible climate change impacts. Since our study is the first to model plasticity in an EP construct's functionality and to extrapolate the results to predict climate change impacts, it stands as a template for future studies that endeavour to make predictions about the influence of climate change on animal EPs.
Collapse
Affiliation(s)
- S J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - W I Sellers
- School of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PL, UK
| |
Collapse
|