1
|
Přibylová L, Ševčík J, Eclerová V, Klimeš P, Brázdil M, Meijer HGE. Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts. Netw Neurosci 2024; 8:293-318. [PMID: 38562290 PMCID: PMC10954350 DOI: 10.1162/netn_a_00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/21/2023] [Indexed: 04/04/2024] Open
Abstract
Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.
Collapse
Affiliation(s)
- Lenka Přibylová
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Ševčík
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Eclerová
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Klimeš
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Dept. of Neurology, St. Anne’s Univ. Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic, member of the ERN EpiCARE
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hil G. E. Meijer
- Department of Applied Mathematics, Techmed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Paul Asir M, Sathiyadevi K, Philominathan P, Premraj D. A nonlinear memductance induced intermittent and anti-phase synchronization. CHAOS (WOODBURY, N.Y.) 2022; 32:073125. [PMID: 35907725 DOI: 10.1063/5.0099011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
We introduce a model to mimic the dynamics of oscillators that are coupled by mean-field nonlinear memductance. Notably, nonlinear memductance produces dynamic nonlinearity, which causes the direction of coupling to change over time. Depending on the parameters, such a dynamic coupling drives the trajectory of oscillators to a synchronization or anti-synchronization manifold. Specifically, depending on the forcing frequency and coupling strength, we find anti-phase and intermittent synchronization. With the increase in coupling magnitude, one can observe a transition from intermittent synchronization to complete synchronization through anti-phase synchronization. The results are validated through numerical simulations. The hypothesis has a huge impact on the study of neuronal networks.
Collapse
Affiliation(s)
- M Paul Asir
- Department of Physics, Central University of Rajasthan, Ajmer 305 817, India
| | - K Sathiyadevi
- Centre for Computation Biology, Chennai Institute of Technology, Chennai 600 069, Tamilnadu, India
| | - P Philominathan
- Annai Vailankanni Arts and Science College, Thanjavur 613007, Tamilnadu, India
| | - D Premraj
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600 069, Tamilnadu, India
| |
Collapse
|
3
|
Ryzhkov NV, Nikolaev KG, Ivanov AS, Skorb EV. Infochemistry and the Future of Chemical Information Processing. Annu Rev Chem Biomol Eng 2021; 12:63-95. [PMID: 33909470 DOI: 10.1146/annurev-chembioeng-122120-023514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.
Collapse
Affiliation(s)
- Nikolay V Ryzhkov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| |
Collapse
|
4
|
Chowdhury SN, Rakshit S, Buldú JM, Ghosh D, Hens C. Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Phys Rev E 2021; 103:032310. [PMID: 33862752 DOI: 10.1103/physreve.103.032310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
A series of recent publications, within the framework of network science, have focused on the coexistence of mixed attractive and repulsive (excitatory and inhibitory) interactions among the units within the same system, motivated by the analogies with spin glasses as well as to neural networks, or ecological systems. However, most of these investigations have been restricted to single layer networks, requiring further analysis of the complex dynamics and particular equilibrium states that emerge in multilayer configurations. This article investigates the synchronization properties of dynamical systems connected through multiplex architectures in the presence of attractive intralayer and repulsive interlayer connections. This setting enables the emergence of antisynchronization, i.e., intralayer synchronization coexisting with antiphase dynamics between coupled systems of different layers. We demonstrate the existence of a transition from interlayer antisynchronization to antiphase synchrony in any connected bipartite multiplex architecture when the repulsive coupling is introduced through any spanning tree of a single layer. We identify, analytically, the required graph topologies for interlayer antisynchronization and its interplay with intralayer and antiphase synchronization. Next, we analytically derive the invariance of intralayer synchronization manifold and calculate the attractor size of each oscillator exhibiting interlayer antisynchronization together with intralayer synchronization. The necessary conditions for the existence of interlayer antisynchronization along with intralayer synchronization are given and numerically validated by considering Stuart-Landau oscillators. Finally, we also analytically derive the local stability condition of the interlayer antisynchronization state using the master stability function approach.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Javier M Buldú
- Laboratory of Biological Networks, Center for Biomedical Technology-UPM, Madrid 28223, Spain
- Complex Systems Group and GISC, Universidad Rey Juan Carlos, Móstoles 28933, Spain
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| |
Collapse
|
5
|
Chowdhury SN, Ghosh D, Hens C. Effect of repulsive links on frustration in attractively coupled networks. Phys Rev E 2020; 101:022310. [PMID: 32168719 DOI: 10.1103/physreve.101.022310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
We investigate the impact of attractive-repulsive interaction in networks of limit cycle oscillators. Mainly we focus on the design principle for generating an antiphase state between adjacent nodes in a complex network. We establish that a partial negative control throughout the branches of a spanning tree inside the positively coupled limit cycle oscillators works efficiently well in comparison with randomly chosen negative links to establish zero frustration (antiphase synchronization) in bipartite graphs. Based on the emergence of zero frustration, we develop a universal 0-π rule to understand the antiphase synchronization in a bipartite graph. Further, this rule is used to construct a nonbipartite graph for a given nonzero frustrated value. We finally show the generality of 0-π rule by implementing it in arbitrary undirected nonbipartite graphs of attractive-repulsively coupled limit cycle oscillators and successfully calculate the nonzero frustration value, which matches with numerical data. The validation of the rule is checked through the bifurcation analysis of small networks. Our work may unveil the underlying mechanism of several synchronization phenomena that exist in a network of oscillators having a mixed type of coupling.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| |
Collapse
|
6
|
Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190039. [PMID: 31656134 PMCID: PMC6834002 DOI: 10.1098/rsta.2019.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Dynamical systems are widespread, with examples in physics, chemistry, biology, population dynamics, communications, climatology and social science. They are rarely isolated but generally interact with each other. These interactions can be characterized by coupling functions-which contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how each interaction occurs. Coupling functions can be used, not only to understand, but also to control and predict the outcome of the interactions. This theme issue assembles ground-breaking work on coupling functions by leading scientists. After overviewing the field and describing recent advances in the theory, it discusses novel methods for the detection and reconstruction of coupling functions from measured data. It then presents applications in chemistry, neuroscience, cardio-respiratory physiology, climate, electrical engineering and social science. Taken together, the collection summarizes earlier work on coupling functions, reviews recent developments, presents the state of the art, and looks forward to guide the future evolution of the field. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
Collapse
Affiliation(s)
- Tomislav Stankovski
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
- Faculty of Medicine, Ss Cyril and Methodius University, Skopje 1000, Macedonia
| | - Tiago Pereira
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
- Institute of Mathematical and Computer Sciences, University of Sao Paulo, Sao Carlos 13566-590, Brazil
| | | | | |
Collapse
|