1
|
Melin H, Moore L, Fletcher LN, Hammel HB, O’Donoghue J, Stallard TS, Milam SN, Roman M, King ORT, Rowe-Gurney N, Thomas EE, Wang R, Tiranti PI, Harkett J, Knowles KL. Discovery of H 3 + and infrared aurorae at Neptune with JWST. NATURE ASTRONOMY 2025; 9:666-671. [PMID: 40417327 PMCID: PMC12095041 DOI: 10.1038/s41550-025-02507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/17/2025] [Indexed: 05/27/2025]
Abstract
Emissions from the upper-atmospheric molecular ionH 3 + have been used to study the global-scale interactions of Jupiter, Saturn and Uranus with their surrounding space environments for over 30 years, revealing the processes shaping the aurorae. However, despite repeated attempts, and contrary to models that predict it should be present, this ion has proven elusive at Neptune. Here, using observations from the James Webb Space Telescope, we detectH 3 + at Neptune, as well as distinct infrared southern auroral emissions. The average upper-atmosphere temperature is a factor of two cooler than those derived 34 years ago by Voyager 2, showing that the energy balance of this region is regulated by physical processes acting on a timescale shorter than both Neptunian seasons (40 yr) and the solar cycle.
Collapse
Affiliation(s)
- Henrik Melin
- Department of Maths, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| | - Luke Moore
- Department of Astronomy, Boston University, Boston, MA USA
- Center for Space Physics, Boston University, Boston, MA USA
| | - Leigh N. Fletcher
- School of Physics & Astronomy, University of Leicester, Leicester, UK
| | - Heidi B. Hammel
- Association of Universities for Research in Astronomy, Washington, DC USA
| | - James O’Donoghue
- Department of Meteorology, University of Reading, Reading, UK
- Department of Solar System Science, JAXA Institute of Space and Astronautical Science, Sagamihara, Japan
| | - Tom S. Stallard
- Department of Maths, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| | | | - Michael Roman
- School of Physics & Astronomy, University of Leicester, Leicester, UK
| | - Oliver R. T. King
- School of Physics & Astronomy, University of Leicester, Leicester, UK
| | | | - Emma E. Thomas
- Department of Maths, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| | - Ruoyan Wang
- School of Physics & Astronomy, University of Leicester, Leicester, UK
| | - Paola I. Tiranti
- Department of Maths, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| | - Jake Harkett
- School of Physics & Astronomy, University of Leicester, Leicester, UK
| | - Katie L. Knowles
- Department of Maths, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Melin H. The upper atmospheres of Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190478. [PMID: 33161864 PMCID: PMC7658783 DOI: 10.1098/rsta.2019.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H3+ provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H3+ has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H3+ at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Henrik Melin
- School of Physics and Astronomy, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Moses JI, Cavalié T, Fletcher LN, Roman MT. Atmospheric chemistry on Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190477. [PMID: 33161866 PMCID: PMC7658780 DOI: 10.1098/rsta.2019.0477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
Comparatively little is known about atmospheric chemistry on Uranus and Neptune, because remote spectral observations of these cold, distant 'Ice Giants' are challenging, and each planet has only been visited by a single spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is expected to control the composition in the deeper, hotter regions of the atmosphere on both planets, but disequilibrium chemical processes such as transport-induced quenching and photochemistry alter the composition in the upper atmospheric regions that can be probed remotely. Surprising disparities in the abundance of disequilibrium chemical products between the two planets point to significant differences in atmospheric transport. The atmospheric composition of Uranus and Neptune can provide critical clues for unravelling details of planet formation and evolution, but only if it is fully understood how and why atmospheric constituents vary in a three-dimensional sense and how material coming in from outside the planet affects observed abundances. Future mission planning should take into account the key outstanding questions that remain unanswered about atmospheric chemistry on Uranus and Neptune, particularly those questions that pertain to planet formation and evolution, and those that address the complex, coupled atmospheric processes that operate on Ice Giants within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- J. I. Moses
- Space Science Institute, 4765 Walnut Street, Suite B, Boulder, CO 80301, USA
| | - T. Cavalié
- Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- LESIA, Observatoire de Paris, 92195 Meudon, France
| | - L. N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - M. T. Roman
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|