1
|
Kowald D, Scher S, Pammer-Schindler V, Müllner P, Waxnegger K, Demelius L, Fessl A, Toller M, Mendoza Estrada IG, Šimić I, Sabol V, Trügler A, Veas E, Kern R, Nad T, Kopeinik S. Establishing and evaluating trustworthy AI: overview and research challenges. Front Big Data 2024; 7:1467222. [PMID: 39677583 PMCID: PMC11638207 DOI: 10.3389/fdata.2024.1467222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Artificial intelligence (AI) technologies (re-)shape modern life, driving innovation in a wide range of sectors. However, some AI systems have yielded unexpected or undesirable outcomes or have been used in questionable manners. As a result, there has been a surge in public and academic discussions about aspects that AI systems must fulfill to be considered trustworthy. In this paper, we synthesize existing conceptualizations of trustworthy AI along six requirements: (1) human agency and oversight, (2) fairness and non-discrimination, (3) transparency and explainability, (4) robustness and accuracy, (5) privacy and security, and (6) accountability. For each one, we provide a definition, describe how it can be established and evaluated, and discuss requirement-specific research challenges. Finally, we conclude this analysis by identifying overarching research challenges across the requirements with respect to (1) interdisciplinary research, (2) conceptual clarity, (3) context-dependency, (4) dynamics in evolving systems, and (5) investigations in real-world contexts. Thus, this paper synthesizes and consolidates a wide-ranging and active discussion currently taking place in various academic sub-communities and public forums. It aims to serve as a reference for a broad audience and as a basis for future research directions.
Collapse
Affiliation(s)
- Dominik Kowald
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Sebastian Scher
- Know Center Research GmbH, Graz, Austria
- Department of Geography and Regional Science, Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Viktoria Pammer-Schindler
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | | | | | - Lea Demelius
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Angela Fessl
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | | | | | | | | | - Andreas Trügler
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
- Department of Geography and Regional Science, Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Eduardo Veas
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Roman Kern
- Know Center Research GmbH, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
2
|
Ognjanović I, Zoulias E, Mantas J. Progress Achieved, Landmarks, and Future Concerns in Biomedical and Health Informatics. Healthcare (Basel) 2024; 12:2041. [PMID: 39451456 PMCID: PMC11506887 DOI: 10.3390/healthcare12202041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The biomedical and health informatics (BMHI) fields have been advancing rapidly, a trend particularly emphasised during the recent COVID-19 pandemic, introducing innovations in BMHI. Over nearly 50 years since its establishment as a scientific discipline, BMHI has encountered several challenges, such as mishaps, delays, failures, and moments of enthusiastic expectations and notable successes. This paper focuses on reviewing the progress made in the BMHI discipline, evaluating key milestones, and discussing future challenges. METHODS To, Structured, step-by-step qualitative methodology was developed and applied, centred on gathering expert opinions and analysing trends from the literature to provide a comprehensive assessment. Experts and pioneers in the BMHI field were assigned thematic tasks based on the research question, providing critical inputs for the thematic analysis. This led to the identification of five key dimensions used to present the findings in the paper: informatics in biomedicine and healthcare, health data in Informatics, nurses in informatics, education and accreditation in health informatics, and ethical, legal, social, and security issues. RESULTS Each dimension is examined through recently emerging innovations, linking them directly to the future of healthcare, like the role of artificial intelligence, innovative digital health tools, the expansion of telemedicine, and the use of mobile health apps and wearable devices. The new approach of BMHI covers newly introduced clinical needs and approaches like patient-centric, remote monitoring, and precision medicine clinical approaches. CONCLUSIONS These insights offer clear recommendations for improving education and developing experts to advance future innovations. Notably, this narrative review presents a body of knowledge essential for a deep understanding of the BMHI field from a human-centric perspective and, as such, could serve as a reference point for prospective analysis and innovation development.
Collapse
Affiliation(s)
- Ivana Ognjanović
- Faculty for Information Systems and Technologies, University of Donja Gorica, 81000 Podgorica, Montenegro
- European Federation for Medical Informatics, CH-1052 Le Mont-sur-Lausanne, Switzerland
| | - Emmanouil Zoulias
- Health Informatics Lab, Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.Z.); (J.M.)
| | - John Mantas
- Health Informatics Lab, Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.Z.); (J.M.)
| |
Collapse
|
3
|
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, Burkhart MC, Dewachter I, Gellersen HM, Low A, Lourida I, Machado L, Madan CR, Malpetti M, Mejia J, Michopoulou S, Muñoz-Neira C, Pepys J, Peres M, Phillips V, Ramanan S, Tamburin S, Tantiangco HM, Thakur L, Tomassini A, Vipin A, Tang E, Newby D, Ranson JM, Llewellyn DJ, Veldsman M, Rittman T. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement 2023; 19:5885-5904. [PMID: 37563912 DOI: 10.1002/alz.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Ilse Dewachter
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Luiza Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jhony Mejia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Sofia Michopoulou
- Imaging Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Carlos Muñoz-Neira
- Research into Memory, Brain sciences and dementia Group (ReMemBr Group), Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Artificial Intelligence & Computational Neuroscience Group (AICN Group), Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Pepys
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marion Peres
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, UK
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Tomassini
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Eugene Tang
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Leben D. Explainable AI as evidence of fair decisions. Front Psychol 2023; 14:1069426. [PMID: 36865358 PMCID: PMC9971226 DOI: 10.3389/fpsyg.2023.1069426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
This paper will propose that explanations are valuable to those impacted by a model's decisions (model patients) to the extent that they provide evidence that a past adverse decision was unfair. Under this proposal, we should favor models and explainability methods which generate counterfactuals of two types. The first type of counterfactual is positive evidence of fairness: a set of states under the control of the patient which (if changed) would have led to a beneficial decision. The second type of counterfactual is negative evidence of fairness: a set of irrelevant group or behavioral attributes which (if changed) would not have led to a beneficial decision. Each of these counterfactual statements is related to fairness, under the Liberal Egalitarian idea that treating one person differently than another is justified only on the basis of features which were plausibly under each person's control. Other aspects of an explanation, such as feature importance and actionable recourse, are not essential under this view, and need not be a goal of explainable AI.
Collapse
|
5
|
Distinguishing two features of accountability for AI technologies. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
An explainable artificial intelligence approach for financial distress prediction. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Werder K, Ramesh B, Zhang R(S. Establishing Data Provenance for Responsible Artificial Intelligence Systems. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS 2022. [DOI: 10.1145/3503488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Data provenance, a record that describes the origins and processing of data, offers new promises in the increasingly important role of artificial intelligence (AI)-based systems in guiding human decision making. To avoid disastrous outcomes that can result from bias-laden AI systems, responsible AI builds on four important characteristics: fairness, accountability, transparency, and explainability. To stimulate further research on data provenance that enables responsible AI, this study outlines existing biases and discusses possible implementations of data provenance to mitigate them. We first review biases stemming from the data's origins and pre-processing. We then discuss the current state of practice, the challenges it presents, and corresponding recommendations to address them. We present a summary highlighting how our recommendations can help establish data provenance and thereby mitigate biases stemming from the data's origins and pre-processing to realize responsible AI-based systems. We conclude with a research agenda suggesting further research avenues.
Collapse
Affiliation(s)
- Karl Werder
- Cologne Institute for Information Systems, University of Cologne, Albertus-Magnus-Platz, Köln, Germany
| | | | | |
Collapse
|
8
|
Jiang Y, Li X, Luo H, Yin S, Kaynak O. Quo vadis artificial intelligence? DISCOVER ARTIFICIAL INTELLIGENCE 2022; 2:4. [DOI: 10.1007/s44163-022-00022-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
AbstractThe study of artificial intelligence (AI) has been a continuous endeavor of scientists and engineers for over 65 years. The simple contention is that human-created machines can do more than just labor-intensive work; they can develop human-like intelligence. Being aware or not, AI has penetrated into our daily lives, playing novel roles in industry, healthcare, transportation, education, and many more areas that are close to the general public. AI is believed to be one of the major drives to change socio-economical lives. In another aspect, AI contributes to the advancement of state-of-the-art technologies in many fields of study, as helpful tools for groundbreaking research. However, the prosperity of AI as we witness today was not established smoothly. During the past decades, AI has struggled through historical stages with several winters. Therefore, at this juncture, to enlighten future development, it is time to discuss the past, present, and have an outlook on AI. In this article, we will discuss from a historical perspective how challenges were faced on the path of revolution of both the AI tools and the AI systems. Especially, in addition to the technical development of AI in the short to mid-term, thoughts and insights are also presented regarding the symbiotic relationship of AI and humans in the long run.
Collapse
|
9
|
Kaynak O, He W, Flammini F, Liu Z. Towards symbiotic autonomous systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200359. [PMID: 34398657 DOI: 10.1098/rsta.2020.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Okyay Kaynak
- Faculty of Engineering, Bogazici University, Istanbul, Turkey
| | - Wei He
- University of Science and Technology, Beijing, People's Republic of China
| | | | - Zhijie Liu
- University of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|